Well-balanced schemes versus fractional step method for hyperbolic systems with source terms
The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard f...
Gespeichert in:
Veröffentlicht in: | Calcolo 2006-01, Vol.43 (4), p.217-251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 4 |
container_start_page | 217 |
container_title | Calcolo |
container_volume | 43 |
creator | Gallouet, Thierry Hérard, Jean-Marc Hurisse, Olivier LeRoux, Alain-Yves |
description | The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10092-006-0123-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01484115v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1195696641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</originalsourceid><addsrcrecordid>eNo9UE1LAzEUDKJgrf4Ab8Gbh2heNvuRYylqhYIXxYsQsmnCbtlt1rxtpf_elBUv7_HmDcPMEHIL_AE4Lx8xTSUY5wXjIDJWnpEZgChYLjN5Tmac84rxQshLcoW4TWcuKzkjX5-u61htOrOzbkPRNq53SA8u4h6pj8aObdiZjuLoBtq7sQkb6kOkzXFwsQ5dayke07NH-tOODcWwj9bR0cUer8mFNx26m789Jx_PT-_LFVu_vbwuF2tmM6lGZmWy7A3kLs8UJMOQe2-92Ehlcq9cUSbI11YJWUglRF3WKasydVFww2ufzcn9pNuYTg-x7U086mBavVqs9QnjkMIC5AdI3LuJO8TwvXc46m1ynBKiFlBWQqmqTCSYSDYGxOj8vypwfepbT33r1Lc-9a3L7BdnEnLa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217829987</pqid></control><display><type>article</type><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</creator><creatorcontrib>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</creatorcontrib><description>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-006-0123-7</identifier><identifier>CODEN: CALOBK</identifier><language>eng</language><publisher>Milano: Springer Nature B.V</publisher><subject>Accuracy ; Flow control ; Mathematics</subject><ispartof>Calcolo, 2006-01, Vol.43 (4), p.217-251</ispartof><rights>Springer-Verlag 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</citedby><cites>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</cites><orcidid>0000-0001-9099-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01484115$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallouet, Thierry</creatorcontrib><creatorcontrib>Hérard, Jean-Marc</creatorcontrib><creatorcontrib>Hurisse, Olivier</creatorcontrib><creatorcontrib>LeRoux, Alain-Yves</creatorcontrib><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><title>Calcolo</title><description>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Flow control</subject><subject>Mathematics</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEUDKJgrf4Ab8Gbh2heNvuRYylqhYIXxYsQsmnCbtlt1rxtpf_elBUv7_HmDcPMEHIL_AE4Lx8xTSUY5wXjIDJWnpEZgChYLjN5Tmac84rxQshLcoW4TWcuKzkjX5-u61htOrOzbkPRNq53SA8u4h6pj8aObdiZjuLoBtq7sQkb6kOkzXFwsQ5dayke07NH-tOODcWwj9bR0cUer8mFNx26m789Jx_PT-_LFVu_vbwuF2tmM6lGZmWy7A3kLs8UJMOQe2-92Ehlcq9cUSbI11YJWUglRF3WKasydVFww2ufzcn9pNuYTg-x7U086mBavVqs9QnjkMIC5AdI3LuJO8TwvXc46m1ynBKiFlBWQqmqTCSYSDYGxOj8vypwfepbT33r1Lc-9a3L7BdnEnLa</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Gallouet, Thierry</creator><creator>Hérard, Jean-Marc</creator><creator>Hurisse, Olivier</creator><creator>LeRoux, Alain-Yves</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9099-6072</orcidid></search><sort><creationdate>20060101</creationdate><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><author>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Flow control</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallouet, Thierry</creatorcontrib><creatorcontrib>Hérard, Jean-Marc</creatorcontrib><creatorcontrib>Hurisse, Olivier</creatorcontrib><creatorcontrib>LeRoux, Alain-Yves</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallouet, Thierry</au><au>Hérard, Jean-Marc</au><au>Hurisse, Olivier</au><au>LeRoux, Alain-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</atitle><jtitle>Calcolo</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>43</volume><issue>4</issue><spage>217</spage><epage>251</epage><pages>217-251</pages><issn>0008-0624</issn><eissn>1126-5434</eissn><coden>CALOBK</coden><abstract>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</abstract><cop>Milano</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10092-006-0123-7</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-9099-6072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2006-01, Vol.43 (4), p.217-251 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01484115v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Flow control Mathematics |
title | Well-balanced schemes versus fractional step method for hyperbolic systems with source terms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-balanced%20schemes%20versus%20fractional%20step%20method%20for%20hyperbolic%20systems%20with%20source%20terms&rft.jtitle=Calcolo&rft.au=Gallouet,%20Thierry&rft.date=2006-01-01&rft.volume=43&rft.issue=4&rft.spage=217&rft.epage=251&rft.pages=217-251&rft.issn=0008-0624&rft.eissn=1126-5434&rft.coden=CALOBK&rft_id=info:doi/10.1007/s10092-006-0123-7&rft_dat=%3Cproquest_hal_p%3E1195696641%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217829987&rft_id=info:pmid/&rfr_iscdi=true |