Well-balanced schemes versus fractional step method for hyperbolic systems with source terms

The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2006-01, Vol.43 (4), p.217-251
Hauptverfasser: Gallouet, Thierry, Hérard, Jean-Marc, Hurisse, Olivier, LeRoux, Alain-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 4
container_start_page 217
container_title Calcolo
container_volume 43
creator Gallouet, Thierry
Hérard, Jean-Marc
Hurisse, Olivier
LeRoux, Alain-Yves
description The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10092-006-0123-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01484115v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1195696641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</originalsourceid><addsrcrecordid>eNo9UE1LAzEUDKJgrf4Ab8Gbh2heNvuRYylqhYIXxYsQsmnCbtlt1rxtpf_elBUv7_HmDcPMEHIL_AE4Lx8xTSUY5wXjIDJWnpEZgChYLjN5Tmac84rxQshLcoW4TWcuKzkjX5-u61htOrOzbkPRNq53SA8u4h6pj8aObdiZjuLoBtq7sQkb6kOkzXFwsQ5dayke07NH-tOODcWwj9bR0cUer8mFNx26m789Jx_PT-_LFVu_vbwuF2tmM6lGZmWy7A3kLs8UJMOQe2-92Ehlcq9cUSbI11YJWUglRF3WKasydVFww2ufzcn9pNuYTg-x7U086mBavVqs9QnjkMIC5AdI3LuJO8TwvXc46m1ynBKiFlBWQqmqTCSYSDYGxOj8vypwfepbT33r1Lc-9a3L7BdnEnLa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217829987</pqid></control><display><type>article</type><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</creator><creatorcontrib>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</creatorcontrib><description>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-006-0123-7</identifier><identifier>CODEN: CALOBK</identifier><language>eng</language><publisher>Milano: Springer Nature B.V</publisher><subject>Accuracy ; Flow control ; Mathematics</subject><ispartof>Calcolo, 2006-01, Vol.43 (4), p.217-251</ispartof><rights>Springer-Verlag 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</citedby><cites>FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</cites><orcidid>0000-0001-9099-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01484115$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallouet, Thierry</creatorcontrib><creatorcontrib>Hérard, Jean-Marc</creatorcontrib><creatorcontrib>Hurisse, Olivier</creatorcontrib><creatorcontrib>LeRoux, Alain-Yves</creatorcontrib><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><title>Calcolo</title><description>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Flow control</subject><subject>Mathematics</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEUDKJgrf4Ab8Gbh2heNvuRYylqhYIXxYsQsmnCbtlt1rxtpf_elBUv7_HmDcPMEHIL_AE4Lx8xTSUY5wXjIDJWnpEZgChYLjN5Tmac84rxQshLcoW4TWcuKzkjX5-u61htOrOzbkPRNq53SA8u4h6pj8aObdiZjuLoBtq7sQkb6kOkzXFwsQ5dayke07NH-tOODcWwj9bR0cUer8mFNx26m789Jx_PT-_LFVu_vbwuF2tmM6lGZmWy7A3kLs8UJMOQe2-92Ehlcq9cUSbI11YJWUglRF3WKasydVFww2ufzcn9pNuYTg-x7U086mBavVqs9QnjkMIC5AdI3LuJO8TwvXc46m1ynBKiFlBWQqmqTCSYSDYGxOj8vypwfepbT33r1Lc-9a3L7BdnEnLa</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Gallouet, Thierry</creator><creator>Hérard, Jean-Marc</creator><creator>Hurisse, Olivier</creator><creator>LeRoux, Alain-Yves</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9099-6072</orcidid></search><sort><creationdate>20060101</creationdate><title>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</title><author>Gallouet, Thierry ; Hérard, Jean-Marc ; Hurisse, Olivier ; LeRoux, Alain-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c4012fa15e539154315ffcf2d49a5f9e67431fbc92464922b7b0929ab660a0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Flow control</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallouet, Thierry</creatorcontrib><creatorcontrib>Hérard, Jean-Marc</creatorcontrib><creatorcontrib>Hurisse, Olivier</creatorcontrib><creatorcontrib>LeRoux, Alain-Yves</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallouet, Thierry</au><au>Hérard, Jean-Marc</au><au>Hurisse, Olivier</au><au>LeRoux, Alain-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-balanced schemes versus fractional step method for hyperbolic systems with source terms</atitle><jtitle>Calcolo</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>43</volume><issue>4</issue><spage>217</spage><epage>251</epage><pages>217-251</pages><issn>0008-0624</issn><eissn>1126-5434</eissn><coden>CALOBK</coden><abstract>The paper is devoted to the analysis of the true accuracy of different schemes when computing a simple hyperbolic model with source terms, which describes the motion of two-phase flows including source terms. The strategy of upwinding the source terms is investigated and compared with the standard fractional step method. A first scheme relies on the usual fractional step approach. A second scheme applies for upwinding of source terms. It, however, does not provide satisfactory results when computing certain specific unsteady cases. This behaviour can be easily explained. It thus motivates us to introduce a third scheme, which is similar to the previous but aims at providing an increased accuracy on coarse meshes when computing highly unsteady flows. This latter scheme requires us to define a cell scheme which computes the void fraction with the help of a modified governing equation, while using the same interface solver. A detailed numerical study which includes a measure of the L1 norm of the error completes the work. [PUBLICATION ABSTRACT]</abstract><cop>Milano</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10092-006-0123-7</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-9099-6072</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2006-01, Vol.43 (4), p.217-251
issn 0008-0624
1126-5434
language eng
recordid cdi_hal_primary_oai_HAL_hal_01484115v1
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Flow control
Mathematics
title Well-balanced schemes versus fractional step method for hyperbolic systems with source terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-balanced%20schemes%20versus%20fractional%20step%20method%20for%20hyperbolic%20systems%20with%20source%20terms&rft.jtitle=Calcolo&rft.au=Gallouet,%20Thierry&rft.date=2006-01-01&rft.volume=43&rft.issue=4&rft.spage=217&rft.epage=251&rft.pages=217-251&rft.issn=0008-0624&rft.eissn=1126-5434&rft.coden=CALOBK&rft_id=info:doi/10.1007/s10092-006-0123-7&rft_dat=%3Cproquest_hal_p%3E1195696641%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217829987&rft_id=info:pmid/&rfr_iscdi=true