Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009 ) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2017-03, Vol.16 (3), p.1-65, Article 60
Hauptverfasser: Scherer, Artur, Valiron, Benoît, Mau, Siun-Chuon, Alexander, Scott, van den Berg, Eric, Chapuran, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 3
container_start_page 1
container_title Quantum information processing
container_volume 16
creator Scherer, Artur
Valiron, Benoît
Mau, Siun-Chuon
Alexander, Scott
van den Berg, Eric
Chapuran, Thomas E.
description We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009 ) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013 ). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X , Y , Z , H , S , T , CNOT } . In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N = 332 , 020 , 680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ε = 0.01 requires an approximate circuit width 340 and circuit depth of order 10 25 if oracle costs are excluded, and a circuit width and circuit depth of order 10 8 and 10 29 , respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.
doi_str_mv 10.1007/s11128-016-1495-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01474610v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880758675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-7d4261173a54fca4513478a8809dd3cd5b99920df6386d71f3ca21f103db8eaa3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSNEpZbSH9CbJU4cDJ44tpNjtVCKtBIXOFtTZ7KbKom3HgdpfwT_maRBiAsnW_Z732jeK4pbUB9AKfeRAaCspQIroWqMNK-KKzBOS9C6fP1yV1I5Yy6LN8xPSpVga3tV_NrFKSTKJBJxnFMggRMOZ-5ZxE7kI4nnGac8j2LoJ8Ik-cyZRoHDIaY-H0cxM7UiRxHieJoX0OqhgUJOccTDRLkPggPmTKmfDiKkyCx4-e_jtM5AUX4SGdOB8tviosOB6ebPeV38uP_8ffcg99--fN3d7WWoTJOla6vSAjiNpuoCVgZ05Wqsa9W0rQ6teWyaplRtZ3VtWwedDlhCB0q3jzUh6uvi_cY94uBPqR8xnX3E3j_c7f36pqBylQX1Exbtu017SvF5Js7-aclpyYg9LBOdqa0ziwo21ct6ibq_WFB-bchvDS1k69eG_OopNw-f1mQo_UP-r-k3LxuVJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880758675</pqid></control><display><type>article</type><title>Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target</title><source>SpringerLink Journals</source><creator>Scherer, Artur ; Valiron, Benoît ; Mau, Siun-Chuon ; Alexander, Scott ; van den Berg, Eric ; Chapuran, Thomas E.</creator><creatorcontrib>Scherer, Artur ; Valiron, Benoît ; Mau, Siun-Chuon ; Alexander, Scott ; van den Berg, Eric ; Chapuran, Thomas E.</creatorcontrib><description>We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009 ) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013 ). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X , Y , Z , H , S , T , CNOT } . In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N = 332 , 020 , 680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ε = 0.01 requires an approximate circuit width 340 and circuit depth of order 10 25 if oracle costs are excluded, and a circuit width and circuit depth of order 10 8 and 10 29 , respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-016-1495-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits ; Clad metals ; Computation and Language ; Computer Science ; Data Structures and Information Theory ; Electromagnetic scattering ; Estimates ; Fault tolerance ; Gate counting ; Mathematical Physics ; Physics ; Physics and Astronomy ; Programming languages ; Quantum Computer Science ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Qubits (quantum computing) ; Scattering cross sections ; Spintronics ; Yttrium</subject><ispartof>Quantum information processing, 2017-03, Vol.16 (3), p.1-65, Article 60</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-7d4261173a54fca4513478a8809dd3cd5b99920df6386d71f3ca21f103db8eaa3</citedby><cites>FETCH-LOGICAL-c459t-7d4261173a54fca4513478a8809dd3cd5b99920df6386d71f3ca21f103db8eaa3</cites><orcidid>0000-0002-1008-5605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-016-1495-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-016-1495-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01474610$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scherer, Artur</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Mau, Siun-Chuon</creatorcontrib><creatorcontrib>Alexander, Scott</creatorcontrib><creatorcontrib>van den Berg, Eric</creatorcontrib><creatorcontrib>Chapuran, Thomas E.</creatorcontrib><title>Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009 ) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013 ). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X , Y , Z , H , S , T , CNOT } . In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N = 332 , 020 , 680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ε = 0.01 requires an approximate circuit width 340 and circuit depth of order 10 25 if oracle costs are excluded, and a circuit width and circuit depth of order 10 8 and 10 29 , respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Clad metals</subject><subject>Computation and Language</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Electromagnetic scattering</subject><subject>Estimates</subject><subject>Fault tolerance</subject><subject>Gate counting</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Programming languages</subject><subject>Quantum Computer Science</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Scattering cross sections</subject><subject>Spintronics</subject><subject>Yttrium</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kUFv1DAQhSNEpZbSH9CbJU4cDJ44tpNjtVCKtBIXOFtTZ7KbKom3HgdpfwT_maRBiAsnW_Z732jeK4pbUB9AKfeRAaCspQIroWqMNK-KKzBOS9C6fP1yV1I5Yy6LN8xPSpVga3tV_NrFKSTKJBJxnFMggRMOZ-5ZxE7kI4nnGac8j2LoJ8Ik-cyZRoHDIaY-H0cxM7UiRxHieJoX0OqhgUJOccTDRLkPggPmTKmfDiKkyCx4-e_jtM5AUX4SGdOB8tviosOB6ebPeV38uP_8ffcg99--fN3d7WWoTJOla6vSAjiNpuoCVgZ05Wqsa9W0rQ6teWyaplRtZ3VtWwedDlhCB0q3jzUh6uvi_cY94uBPqR8xnX3E3j_c7f36pqBylQX1Exbtu017SvF5Js7-aclpyYg9LBOdqa0ziwo21ct6ibq_WFB-bchvDS1k69eG_OopNw-f1mQo_UP-r-k3LxuVJw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Scherer, Artur</creator><creator>Valiron, Benoît</creator><creator>Mau, Siun-Chuon</creator><creator>Alexander, Scott</creator><creator>van den Berg, Eric</creator><creator>Chapuran, Thomas E.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1008-5605</orcidid></search><sort><creationdate>20170301</creationdate><title>Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target</title><author>Scherer, Artur ; Valiron, Benoît ; Mau, Siun-Chuon ; Alexander, Scott ; van den Berg, Eric ; Chapuran, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-7d4261173a54fca4513478a8809dd3cd5b99920df6386d71f3ca21f103db8eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Clad metals</topic><topic>Computation and Language</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Electromagnetic scattering</topic><topic>Estimates</topic><topic>Fault tolerance</topic><topic>Gate counting</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Programming languages</topic><topic>Quantum Computer Science</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Scattering cross sections</topic><topic>Spintronics</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherer, Artur</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><creatorcontrib>Mau, Siun-Chuon</creatorcontrib><creatorcontrib>Alexander, Scott</creatorcontrib><creatorcontrib>van den Berg, Eric</creatorcontrib><creatorcontrib>Chapuran, Thomas E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherer, Artur</au><au>Valiron, Benoît</au><au>Mau, Siun-Chuon</au><au>Alexander, Scott</au><au>van den Berg, Eric</au><au>Chapuran, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>16</volume><issue>3</issue><spage>1</spage><epage>65</epage><pages>1-65</pages><artnum>60</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009 ) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013 ). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X , Y , Z , H , S , T , CNOT } . In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N = 332 , 020 , 680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ε = 0.01 requires an approximate circuit width 340 and circuit depth of order 10 25 if oracle costs are excluded, and a circuit width and circuit depth of order 10 8 and 10 29 , respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-016-1495-5</doi><tpages>65</tpages><orcidid>https://orcid.org/0000-0002-1008-5605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2017-03, Vol.16 (3), p.1-65, Article 60
issn 1570-0755
1573-1332
language eng
recordid cdi_hal_primary_oai_HAL_hal_01474610v1
source SpringerLink Journals
subjects Algorithms
Circuits
Clad metals
Computation and Language
Computer Science
Data Structures and Information Theory
Electromagnetic scattering
Estimates
Fault tolerance
Gate counting
Mathematical Physics
Physics
Physics and Astronomy
Programming languages
Quantum Computer Science
Quantum Computing
Quantum Information Technology
Quantum Physics
Qubits (quantum computing)
Scattering cross sections
Spintronics
Yttrium
title Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concrete%20resource%20analysis%20of%20the%20quantum%20linear-system%20algorithm%20used%20to%20compute%20the%20electromagnetic%20scattering%20cross%20section%20of%20a%202D%20target&rft.jtitle=Quantum%20information%20processing&rft.au=Scherer,%20Artur&rft.date=2017-03-01&rft.volume=16&rft.issue=3&rft.spage=1&rft.epage=65&rft.pages=1-65&rft.artnum=60&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-016-1495-5&rft_dat=%3Cproquest_hal_p%3E1880758675%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880758675&rft_id=info:pmid/&rfr_iscdi=true