Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles

Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-01, Vol.9 (1), p.4856-4867
Hauptverfasser: Hayakawa, Satoshi, Kanaya, Tomoko, Tsuru, Kanji, Shirosaki, Yuki, Osaka, Akiyoshi, Fujii, Eiji, Kawabata, Koji, Gasqueres, Georgiana, Bonhomme, Christian, Babonneau, Florence, Jäger, Christian, Kleebe, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4867
container_issue 1
container_start_page 4856
container_title Acta biomaterialia
container_volume 9
creator Hayakawa, Satoshi
Kanaya, Tomoko
Tsuru, Kanji
Shirosaki, Yuki
Osaka, Akiyoshi
Fujii, Eiji
Kawabata, Koji
Gasqueres, Georgiana
Bonhomme, Christian
Babonneau, Florence
Jäger, Christian
Kleebe, Hans-Joachim
description Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The 29Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q0(SiO44-orHSiO43-) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q0 species in the HAp lattice depends on the Si content. The 31P and 1H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core–shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q0 was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase.
doi_str_mv 10.1016/j.actbio.2012.08.024
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01468405v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S174270611200400X</els_id><sourcerecordid>1220369115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-1e2a6f5639f413cfe9615ad26f27cf7b8d1c4deedb2ceaeed603ac34a72124563</originalsourceid><addsrcrecordid>eNqNksGOFCEQhjtG466rb2CUox56BLqh6YvJZqOOySQedM-kBqpnmPTACMxoP4WvLGOve3Q9kCKV7_-B4q-ql4wuGGXy3W4BJq9dWHDK-IKqBeXto-qSqU7VnZDqcdl3La87KtlF9SylHaWNYlw9rS447znngl5Wv5aYMYYNegzHRFKOR5OPEQl4S5wnJ5djIBY3ESxkFzxZ4xZOLkQSBvIDc222uHcGxnEqWHQntMSDDyZOKZeu80iSG50Jvi4rg_POb8h2sjH8nOBQTDOSA8TszIjpefVkgDHhi7t6Vd1-_PDtZlmvvnz6fHO9qo1gfa4ZcpCDkE0_tKwxA_aSCbBcDrwzQ7dWlpnWIto1NwilStqAaVroOONt0V1Vb2ffLYz6EN0e4qQDOL28Xulzj7JWqpaKEyvsm5k9xPD9iCnrvUsGxxH-DE0z2fNGFN_uP9BOCdH2Tf8w2vCGC0a5fBjlnDayZ0wUtJ1RE0NKEYf7xzGqz7nROz3nRp9zo6nSJTdF9uruhON6j_Ze9DcoBXg9AwMEDZvokr79WhwEpYyqjp6n9H4msHzbyWHUyTj0Bq2LaLK2wf37Dr8BKIXhpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220369115</pqid></control><display><type>article</type><title>Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hayakawa, Satoshi ; Kanaya, Tomoko ; Tsuru, Kanji ; Shirosaki, Yuki ; Osaka, Akiyoshi ; Fujii, Eiji ; Kawabata, Koji ; Gasqueres, Georgiana ; Bonhomme, Christian ; Babonneau, Florence ; Jäger, Christian ; Kleebe, Hans-Joachim</creator><creatorcontrib>Hayakawa, Satoshi ; Kanaya, Tomoko ; Tsuru, Kanji ; Shirosaki, Yuki ; Osaka, Akiyoshi ; Fujii, Eiji ; Kawabata, Koji ; Gasqueres, Georgiana ; Bonhomme, Christian ; Babonneau, Florence ; Jäger, Christian ; Kleebe, Hans-Joachim</creatorcontrib><description>Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The 29Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q0(SiO44-orHSiO43-) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q0 species in the HAp lattice depends on the Si content. The 31P and 1H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core–shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q0 was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.08.024</identifier><identifier>PMID: 22922250</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>anions ; Apatite formation ; Biocompatible Materials ; biodegradability ; Biological effects ; calcium ; Calcium phosphate ; Chemical Sciences ; crystallites ; Crystallization ; Degradation ; Durapatite ; Fourier transform infrared spectroscopy ; Heterogeneous structure ; Hydroxyapatite ; In Vitro Techniques ; Lattices ; Magnetic Resonance Spectroscopy ; Material chemistry ; Microscopy, Electron, Transmission ; nanocrystals ; Nanoparticles ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; quantitative analysis ; Silicate ; Silicates ; Silicon ; Spectroscopy, Fourier Transform Infrared ; Transmission electron microscopy ; X-Ray Diffraction</subject><ispartof>Acta biomaterialia, 2013-01, Vol.9 (1), p.4856-4867</ispartof><rights>2012 Acta Materialia Inc.</rights><rights>Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-1e2a6f5639f413cfe9615ad26f27cf7b8d1c4deedb2ceaeed603ac34a72124563</citedby><cites>FETCH-LOGICAL-c519t-1e2a6f5639f413cfe9615ad26f27cf7b8d1c4deedb2ceaeed603ac34a72124563</cites><orcidid>0000-0002-6961-1331 ; 0000-0003-4235-7430 ; 0000-0003-0802-6961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S174270611200400X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22922250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01468405$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayakawa, Satoshi</creatorcontrib><creatorcontrib>Kanaya, Tomoko</creatorcontrib><creatorcontrib>Tsuru, Kanji</creatorcontrib><creatorcontrib>Shirosaki, Yuki</creatorcontrib><creatorcontrib>Osaka, Akiyoshi</creatorcontrib><creatorcontrib>Fujii, Eiji</creatorcontrib><creatorcontrib>Kawabata, Koji</creatorcontrib><creatorcontrib>Gasqueres, Georgiana</creatorcontrib><creatorcontrib>Bonhomme, Christian</creatorcontrib><creatorcontrib>Babonneau, Florence</creatorcontrib><creatorcontrib>Jäger, Christian</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><title>Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The 29Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q0(SiO44-orHSiO43-) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q0 species in the HAp lattice depends on the Si content. The 31P and 1H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core–shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q0 was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase.</description><subject>anions</subject><subject>Apatite formation</subject><subject>Biocompatible Materials</subject><subject>biodegradability</subject><subject>Biological effects</subject><subject>calcium</subject><subject>Calcium phosphate</subject><subject>Chemical Sciences</subject><subject>crystallites</subject><subject>Crystallization</subject><subject>Degradation</subject><subject>Durapatite</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Heterogeneous structure</subject><subject>Hydroxyapatite</subject><subject>In Vitro Techniques</subject><subject>Lattices</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Material chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>nanocrystals</subject><subject>Nanoparticles</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>quantitative analysis</subject><subject>Silicate</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Transmission electron microscopy</subject><subject>X-Ray Diffraction</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNksGOFCEQhjtG466rb2CUox56BLqh6YvJZqOOySQedM-kBqpnmPTACMxoP4WvLGOve3Q9kCKV7_-B4q-ql4wuGGXy3W4BJq9dWHDK-IKqBeXto-qSqU7VnZDqcdl3La87KtlF9SylHaWNYlw9rS447znngl5Wv5aYMYYNegzHRFKOR5OPEQl4S5wnJ5djIBY3ESxkFzxZ4xZOLkQSBvIDc222uHcGxnEqWHQntMSDDyZOKZeu80iSG50Jvi4rg_POb8h2sjH8nOBQTDOSA8TszIjpefVkgDHhi7t6Vd1-_PDtZlmvvnz6fHO9qo1gfa4ZcpCDkE0_tKwxA_aSCbBcDrwzQ7dWlpnWIto1NwilStqAaVroOONt0V1Vb2ffLYz6EN0e4qQDOL28Xulzj7JWqpaKEyvsm5k9xPD9iCnrvUsGxxH-DE0z2fNGFN_uP9BOCdH2Tf8w2vCGC0a5fBjlnDayZ0wUtJ1RE0NKEYf7xzGqz7nROz3nRp9zo6nSJTdF9uruhON6j_Ze9DcoBXg9AwMEDZvokr79WhwEpYyqjp6n9H4msHzbyWHUyTj0Bq2LaLK2wf37Dr8BKIXhpA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Hayakawa, Satoshi</creator><creator>Kanaya, Tomoko</creator><creator>Tsuru, Kanji</creator><creator>Shirosaki, Yuki</creator><creator>Osaka, Akiyoshi</creator><creator>Fujii, Eiji</creator><creator>Kawabata, Koji</creator><creator>Gasqueres, Georgiana</creator><creator>Bonhomme, Christian</creator><creator>Babonneau, Florence</creator><creator>Jäger, Christian</creator><creator>Kleebe, Hans-Joachim</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6961-1331</orcidid><orcidid>https://orcid.org/0000-0003-4235-7430</orcidid><orcidid>https://orcid.org/0000-0003-0802-6961</orcidid></search><sort><creationdate>201301</creationdate><title>Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles</title><author>Hayakawa, Satoshi ; Kanaya, Tomoko ; Tsuru, Kanji ; Shirosaki, Yuki ; Osaka, Akiyoshi ; Fujii, Eiji ; Kawabata, Koji ; Gasqueres, Georgiana ; Bonhomme, Christian ; Babonneau, Florence ; Jäger, Christian ; Kleebe, Hans-Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-1e2a6f5639f413cfe9615ad26f27cf7b8d1c4deedb2ceaeed603ac34a72124563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>anions</topic><topic>Apatite formation</topic><topic>Biocompatible Materials</topic><topic>biodegradability</topic><topic>Biological effects</topic><topic>calcium</topic><topic>Calcium phosphate</topic><topic>Chemical Sciences</topic><topic>crystallites</topic><topic>Crystallization</topic><topic>Degradation</topic><topic>Durapatite</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Heterogeneous structure</topic><topic>Hydroxyapatite</topic><topic>In Vitro Techniques</topic><topic>Lattices</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Material chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>nanocrystals</topic><topic>Nanoparticles</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>quantitative analysis</topic><topic>Silicate</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Transmission electron microscopy</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayakawa, Satoshi</creatorcontrib><creatorcontrib>Kanaya, Tomoko</creatorcontrib><creatorcontrib>Tsuru, Kanji</creatorcontrib><creatorcontrib>Shirosaki, Yuki</creatorcontrib><creatorcontrib>Osaka, Akiyoshi</creatorcontrib><creatorcontrib>Fujii, Eiji</creatorcontrib><creatorcontrib>Kawabata, Koji</creatorcontrib><creatorcontrib>Gasqueres, Georgiana</creatorcontrib><creatorcontrib>Bonhomme, Christian</creatorcontrib><creatorcontrib>Babonneau, Florence</creatorcontrib><creatorcontrib>Jäger, Christian</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayakawa, Satoshi</au><au>Kanaya, Tomoko</au><au>Tsuru, Kanji</au><au>Shirosaki, Yuki</au><au>Osaka, Akiyoshi</au><au>Fujii, Eiji</au><au>Kawabata, Koji</au><au>Gasqueres, Georgiana</au><au>Bonhomme, Christian</au><au>Babonneau, Florence</au><au>Jäger, Christian</au><au>Kleebe, Hans-Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-01</date><risdate>2013</risdate><volume>9</volume><issue>1</issue><spage>4856</spage><epage>4867</epage><pages>4856-4867</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The 29Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q0(SiO44-orHSiO43-) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q0 species in the HAp lattice depends on the Si content. The 31P and 1H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core–shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q0 was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22922250</pmid><doi>10.1016/j.actbio.2012.08.024</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6961-1331</orcidid><orcidid>https://orcid.org/0000-0003-4235-7430</orcidid><orcidid>https://orcid.org/0000-0003-0802-6961</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2013-01, Vol.9 (1), p.4856-4867
issn 1742-7061
1878-7568
language eng
recordid cdi_hal_primary_oai_HAL_hal_01468405v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects anions
Apatite formation
Biocompatible Materials
biodegradability
Biological effects
calcium
Calcium phosphate
Chemical Sciences
crystallites
Crystallization
Degradation
Durapatite
Fourier transform infrared spectroscopy
Heterogeneous structure
Hydroxyapatite
In Vitro Techniques
Lattices
Magnetic Resonance Spectroscopy
Material chemistry
Microscopy, Electron, Transmission
nanocrystals
Nanoparticles
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
quantitative analysis
Silicate
Silicates
Silicon
Spectroscopy, Fourier Transform Infrared
Transmission electron microscopy
X-Ray Diffraction
title Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20structure%20and%20in%20vitro%20degradation%20behavior%20of%20wet-chemically%20derived%20nanocrystalline%20silicon-containing%20hydroxyapatite%20particles&rft.jtitle=Acta%20biomaterialia&rft.au=Hayakawa,%20Satoshi&rft.date=2013-01&rft.volume=9&rft.issue=1&rft.spage=4856&rft.epage=4867&rft.pages=4856-4867&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.08.024&rft_dat=%3Cproquest_hal_p%3E1220369115%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220369115&rft_id=info:pmid/22922250&rft_els_id=S174270611200400X&rfr_iscdi=true