TESS3: fast inference of spatial population structure and genome scans for selection
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stoc...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2016-03, Vol.16 (2), p.540-548 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 2 |
container_start_page | 540 |
container_title | Molecular ecology resources |
container_volume | 16 |
creator | Caye, Kevin Deist, Timo M. Martins, Helena Michel, Olivier François, Olivier |
description | Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana. |
doi_str_mv | 10.1111/1755-0998.12471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01462247v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761078471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEoqVw5oYscYFDWo8df3Erq6VFWopEF9Gb5XVsSMnGqZ0A_e9xSJsDF7BkeTT6vSfPvKJ4DvgY8jkBwViJlZLHQCoBD4rDpfNwqeXVQfEkpWuMOVaielwcEF6B4AwOi-12fXlJ3yBv0oCazrvoOutQ8Cj1ZmhMi_rQj20uQ4fSEEc7jNEh09Xoq-vC3qFkTZeQDxEl1zo7gU-LR960yT27e4-Kz-_W29V5ufl49n51uiktZxRKIXwtLZGq3uVZ6p23mBhKvTCSSsCEUmKZEcDpjikngSqCFXDja8UYrhw9Kl7Pvt9Mq_vY7E281cE0-vx0o6cehoqTvJgfkNlXM9vHcDO6NOh9k6xrW9O5MCYNQnDOgTD1HygHLGTed0Zf_oVehzF2eeiJwvlKkJk6mSkbQ0rR-eWzgPWUo56S0lNq-k-OWfHiznfc7V298PfBZYDNwM-mdbf_8tMf1hf3xuWsa9Lgfi06E79rLqhg-svFmcZXbz8JvlF6RX8D_hmyzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760176818</pqid></control><display><type>article</type><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</creator><creatorcontrib>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</creatorcontrib><description>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.12471</identifier><identifier>PMID: 26417651</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - classification ; Arabidopsis - genetics ; Arabidopsis thaliana ; Computational Biology ; Computational Biology - methods ; control of false discoveries ; Europe ; Genealogy ; Genes ; Genetic Variation ; Genetics ; Genetics, Population ; Genetics, Population - methods ; genome scans for selection ; Genome, Plant ; Genomes ; geographic variation ; inference of population structure ; Life Sciences ; Phylogeography ; Phylogeography - methods ; Populations and Evolution</subject><ispartof>Molecular ecology resources, 2016-03, Vol.16 (2), p.540-548</ispartof><rights>2015 John Wiley & Sons Ltd</rights><rights>2015 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</citedby><cites>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</cites><orcidid>0000-0002-0890-0383 ; 0000-0003-2402-2442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.12471$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.12471$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26417651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01462247$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caye, Kevin</creatorcontrib><creatorcontrib>Deist, Timo M.</creatorcontrib><creatorcontrib>Martins, Helena</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</description><subject>Arabidopsis</subject><subject>Arabidopsis - classification</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>control of false discoveries</subject><subject>Europe</subject><subject>Genealogy</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genetics, Population - methods</subject><subject>genome scans for selection</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>geographic variation</subject><subject>inference of population structure</subject><subject>Life Sciences</subject><subject>Phylogeography</subject><subject>Phylogeography - methods</subject><subject>Populations and Evolution</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxSMEoqVw5oYscYFDWo8df3Erq6VFWopEF9Gb5XVsSMnGqZ0A_e9xSJsDF7BkeTT6vSfPvKJ4DvgY8jkBwViJlZLHQCoBD4rDpfNwqeXVQfEkpWuMOVaielwcEF6B4AwOi-12fXlJ3yBv0oCazrvoOutQ8Cj1ZmhMi_rQj20uQ4fSEEc7jNEh09Xoq-vC3qFkTZeQDxEl1zo7gU-LR960yT27e4-Kz-_W29V5ufl49n51uiktZxRKIXwtLZGq3uVZ6p23mBhKvTCSSsCEUmKZEcDpjikngSqCFXDja8UYrhw9Kl7Pvt9Mq_vY7E281cE0-vx0o6cehoqTvJgfkNlXM9vHcDO6NOh9k6xrW9O5MCYNQnDOgTD1HygHLGTed0Zf_oVehzF2eeiJwvlKkJk6mSkbQ0rR-eWzgPWUo56S0lNq-k-OWfHiznfc7V298PfBZYDNwM-mdbf_8tMf1hf3xuWsa9Lgfi06E79rLqhg-svFmcZXbz8JvlF6RX8D_hmyzw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Caye, Kevin</creator><creator>Deist, Timo M.</creator><creator>Martins, Helena</creator><creator>Michel, Olivier</creator><creator>François, Olivier</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley/Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0003-2402-2442</orcidid></search><sort><creationdate>201603</creationdate><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><author>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - classification</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>control of false discoveries</topic><topic>Europe</topic><topic>Genealogy</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genetics, Population - methods</topic><topic>genome scans for selection</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>geographic variation</topic><topic>inference of population structure</topic><topic>Life Sciences</topic><topic>Phylogeography</topic><topic>Phylogeography - methods</topic><topic>Populations and Evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caye, Kevin</creatorcontrib><creatorcontrib>Deist, Timo M.</creatorcontrib><creatorcontrib>Martins, Helena</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caye, Kevin</au><au>Deist, Timo M.</au><au>Martins, Helena</au><au>Michel, Olivier</au><au>François, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESS3: fast inference of spatial population structure and genome scans for selection</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2016-03</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>540</spage><epage>548</epage><pages>540-548</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26417651</pmid><doi>10.1111/1755-0998.12471</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0003-2402-2442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2016-03, Vol.16 (2), p.540-548 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01462247v1 |
source | MEDLINE; Wiley Journals |
subjects | Arabidopsis Arabidopsis - classification Arabidopsis - genetics Arabidopsis thaliana Computational Biology Computational Biology - methods control of false discoveries Europe Genealogy Genes Genetic Variation Genetics Genetics, Population Genetics, Population - methods genome scans for selection Genome, Plant Genomes geographic variation inference of population structure Life Sciences Phylogeography Phylogeography - methods Populations and Evolution |
title | TESS3: fast inference of spatial population structure and genome scans for selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESS3:%20fast%20inference%20of%20spatial%20population%20structure%20and%20genome%20scans%20for%20selection&rft.jtitle=Molecular%20ecology%20resources&rft.au=Caye,%20Kevin&rft.date=2016-03&rft.volume=16&rft.issue=2&rft.spage=540&rft.epage=548&rft.pages=540-548&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.12471&rft_dat=%3Cproquest_hal_p%3E1761078471%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760176818&rft_id=info:pmid/26417651&rfr_iscdi=true |