TESS3: fast inference of spatial population structure and genome scans for selection

Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2016-03, Vol.16 (2), p.540-548
Hauptverfasser: Caye, Kevin, Deist, Timo M., Martins, Helena, Michel, Olivier, François, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 2
container_start_page 540
container_title Molecular ecology resources
container_volume 16
creator Caye, Kevin
Deist, Timo M.
Martins, Helena
Michel, Olivier
François, Olivier
description Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.
doi_str_mv 10.1111/1755-0998.12471
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01462247v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761078471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEoqVw5oYscYFDWo8df3Erq6VFWopEF9Gb5XVsSMnGqZ0A_e9xSJsDF7BkeTT6vSfPvKJ4DvgY8jkBwViJlZLHQCoBD4rDpfNwqeXVQfEkpWuMOVaielwcEF6B4AwOi-12fXlJ3yBv0oCazrvoOutQ8Cj1ZmhMi_rQj20uQ4fSEEc7jNEh09Xoq-vC3qFkTZeQDxEl1zo7gU-LR960yT27e4-Kz-_W29V5ufl49n51uiktZxRKIXwtLZGq3uVZ6p23mBhKvTCSSsCEUmKZEcDpjikngSqCFXDja8UYrhw9Kl7Pvt9Mq_vY7E281cE0-vx0o6cehoqTvJgfkNlXM9vHcDO6NOh9k6xrW9O5MCYNQnDOgTD1HygHLGTed0Zf_oVehzF2eeiJwvlKkJk6mSkbQ0rR-eWzgPWUo56S0lNq-k-OWfHiznfc7V298PfBZYDNwM-mdbf_8tMf1hf3xuWsa9Lgfi06E79rLqhg-svFmcZXbz8JvlF6RX8D_hmyzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760176818</pqid></control><display><type>article</type><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</creator><creatorcontrib>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</creatorcontrib><description>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.12471</identifier><identifier>PMID: 26417651</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - classification ; Arabidopsis - genetics ; Arabidopsis thaliana ; Computational Biology ; Computational Biology - methods ; control of false discoveries ; Europe ; Genealogy ; Genes ; Genetic Variation ; Genetics ; Genetics, Population ; Genetics, Population - methods ; genome scans for selection ; Genome, Plant ; Genomes ; geographic variation ; inference of population structure ; Life Sciences ; Phylogeography ; Phylogeography - methods ; Populations and Evolution</subject><ispartof>Molecular ecology resources, 2016-03, Vol.16 (2), p.540-548</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</citedby><cites>FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</cites><orcidid>0000-0002-0890-0383 ; 0000-0003-2402-2442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.12471$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.12471$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26417651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01462247$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caye, Kevin</creatorcontrib><creatorcontrib>Deist, Timo M.</creatorcontrib><creatorcontrib>Martins, Helena</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</description><subject>Arabidopsis</subject><subject>Arabidopsis - classification</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>control of false discoveries</subject><subject>Europe</subject><subject>Genealogy</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genetics, Population - methods</subject><subject>genome scans for selection</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>geographic variation</subject><subject>inference of population structure</subject><subject>Life Sciences</subject><subject>Phylogeography</subject><subject>Phylogeography - methods</subject><subject>Populations and Evolution</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxSMEoqVw5oYscYFDWo8df3Erq6VFWopEF9Gb5XVsSMnGqZ0A_e9xSJsDF7BkeTT6vSfPvKJ4DvgY8jkBwViJlZLHQCoBD4rDpfNwqeXVQfEkpWuMOVaielwcEF6B4AwOi-12fXlJ3yBv0oCazrvoOutQ8Cj1ZmhMi_rQj20uQ4fSEEc7jNEh09Xoq-vC3qFkTZeQDxEl1zo7gU-LR960yT27e4-Kz-_W29V5ufl49n51uiktZxRKIXwtLZGq3uVZ6p23mBhKvTCSSsCEUmKZEcDpjikngSqCFXDja8UYrhw9Kl7Pvt9Mq_vY7E281cE0-vx0o6cehoqTvJgfkNlXM9vHcDO6NOh9k6xrW9O5MCYNQnDOgTD1HygHLGTed0Zf_oVehzF2eeiJwvlKkJk6mSkbQ0rR-eWzgPWUo56S0lNq-k-OWfHiznfc7V298PfBZYDNwM-mdbf_8tMf1hf3xuWsa9Lgfi06E79rLqhg-svFmcZXbz8JvlF6RX8D_hmyzw</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Caye, Kevin</creator><creator>Deist, Timo M.</creator><creator>Martins, Helena</creator><creator>Michel, Olivier</creator><creator>François, Olivier</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley/Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0003-2402-2442</orcidid></search><sort><creationdate>201603</creationdate><title>TESS3: fast inference of spatial population structure and genome scans for selection</title><author>Caye, Kevin ; Deist, Timo M. ; Martins, Helena ; Michel, Olivier ; François, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6531-77fd8c289db111dbfc02a33f7a838102332c5a7163b59e813920916afd95504e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - classification</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>control of false discoveries</topic><topic>Europe</topic><topic>Genealogy</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genetics, Population - methods</topic><topic>genome scans for selection</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>geographic variation</topic><topic>inference of population structure</topic><topic>Life Sciences</topic><topic>Phylogeography</topic><topic>Phylogeography - methods</topic><topic>Populations and Evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caye, Kevin</creatorcontrib><creatorcontrib>Deist, Timo M.</creatorcontrib><creatorcontrib>Martins, Helena</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caye, Kevin</au><au>Deist, Timo M.</au><au>Martins, Helena</au><au>Michel, Olivier</au><au>François, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESS3: fast inference of spatial population structure and genome scans for selection</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2016-03</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>540</spage><epage>548</epage><pages>540-548</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3, a major update of the spatial ancestry estimation program TESS. By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26417651</pmid><doi>10.1111/1755-0998.12471</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0003-2402-2442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2016-03, Vol.16 (2), p.540-548
issn 1755-098X
1755-0998
language eng
recordid cdi_hal_primary_oai_HAL_hal_01462247v1
source MEDLINE; Wiley Journals
subjects Arabidopsis
Arabidopsis - classification
Arabidopsis - genetics
Arabidopsis thaliana
Computational Biology
Computational Biology - methods
control of false discoveries
Europe
Genealogy
Genes
Genetic Variation
Genetics
Genetics, Population
Genetics, Population - methods
genome scans for selection
Genome, Plant
Genomes
geographic variation
inference of population structure
Life Sciences
Phylogeography
Phylogeography - methods
Populations and Evolution
title TESS3: fast inference of spatial population structure and genome scans for selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESS3:%20fast%20inference%20of%20spatial%20population%20structure%20and%20genome%20scans%20for%20selection&rft.jtitle=Molecular%20ecology%20resources&rft.au=Caye,%20Kevin&rft.date=2016-03&rft.volume=16&rft.issue=2&rft.spage=540&rft.epage=548&rft.pages=540-548&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.12471&rft_dat=%3Cproquest_hal_p%3E1761078471%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760176818&rft_id=info:pmid/26417651&rfr_iscdi=true