A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids
In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations o...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2014-08, Vol.278, p.883-901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 901 |
---|---|
container_issue | |
container_start_page | 883 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 278 |
creator | Ramírez, Luis Nogueira, Xesús Khelladi, Sofiane Chassaing, Jean-Camille Colominas, Ignasi |
description | In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids. |
doi_str_mv | 10.1016/j.cma.2014.06.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01459732v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251400214X</els_id><sourcerecordid>1677955310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</originalsourceid><addsrcrecordid>eNqNkbGO1DAURSMEEsPCB9C5hCLBz5nYjqhGK2CRBigWasuxXyYeknjWdgbR8Q_0fBxfgsMgSoQbW1fnvmfdWxRPgVZAgb84VmbSFaOwrSivKJP3ig1I0ZYManm_2FC6bUohWfOweBTjkeYjgW2KHzsy4xcyuMOAofTBYiC9m11CcvbjMiGZMA3ekk5HtMTP5J0_u_lA9qhjIrd3iw4YSe8DSQOS_M6u5DLn-9-Km42fTlmPrhuRvNdnh-Hnt--3yX_ORswDVjyuo5c5prCYtIS86hCcjY-LB70eIz75c18Vn16_-nh9U-4_vHl7vduXZsvrVNYNMA7AwRqAtuNtJ1ELYXtDddPWujaaNwYYs0xa20nBQWuh-77tNJWI9VXx_DJ30KM6BTfp8FV57dTNbq9WLQfbtKJmZ8jsswt7Cv5uwZjU5KLBcdQz-iUq4EK0TVMD_Q-UUSp4NmQULqgJPsaA_d9vAFVrxeqocsVqrVhRrnLF2fPy4sEczZqrisbhbNC6gCYp690_3L8AohmySw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620076677</pqid></control><display><type>article</type><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</creator><creatorcontrib>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</creatorcontrib><description>In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.06.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Benchmarking ; Biomechanics ; Collocated grids ; Discretization ; Finite volume method ; Fluxes ; High-order methods ; Incompressible Navier–Stokes equations ; Interpolation ; Least squares method ; Mathematical analysis ; Mechanics ; Momentum Interpolation Method ; Moving Least Squares ; Navier-Stokes equations ; Physics ; Unstructured grids</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-08, Vol.278, p.883-901</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</citedby><cites>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</cites><orcidid>0000-0002-9005-1375 ; 0000-0002-6500-2109 ; 0000-0002-6221-2303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2014.06.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01459732$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez, Luis</creatorcontrib><creatorcontrib>Nogueira, Xesús</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><creatorcontrib>Colominas, Ignasi</creatorcontrib><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><title>Computer methods in applied mechanics and engineering</title><description>In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</description><subject>Acoustics</subject><subject>Benchmarking</subject><subject>Biomechanics</subject><subject>Collocated grids</subject><subject>Discretization</subject><subject>Finite volume method</subject><subject>Fluxes</subject><subject>High-order methods</subject><subject>Incompressible Navier–Stokes equations</subject><subject>Interpolation</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Momentum Interpolation Method</subject><subject>Moving Least Squares</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Unstructured grids</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkbGO1DAURSMEEsPCB9C5hCLBz5nYjqhGK2CRBigWasuxXyYeknjWdgbR8Q_0fBxfgsMgSoQbW1fnvmfdWxRPgVZAgb84VmbSFaOwrSivKJP3ig1I0ZYManm_2FC6bUohWfOweBTjkeYjgW2KHzsy4xcyuMOAofTBYiC9m11CcvbjMiGZMA3ekk5HtMTP5J0_u_lA9qhjIrd3iw4YSe8DSQOS_M6u5DLn-9-Km42fTlmPrhuRvNdnh-Hnt--3yX_ORswDVjyuo5c5prCYtIS86hCcjY-LB70eIz75c18Vn16_-nh9U-4_vHl7vduXZsvrVNYNMA7AwRqAtuNtJ1ELYXtDddPWujaaNwYYs0xa20nBQWuh-77tNJWI9VXx_DJ30KM6BTfp8FV57dTNbq9WLQfbtKJmZ8jsswt7Cv5uwZjU5KLBcdQz-iUq4EK0TVMD_Q-UUSp4NmQULqgJPsaA_d9vAFVrxeqocsVqrVhRrnLF2fPy4sEczZqrisbhbNC6gCYp690_3L8AohmySw</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Ramírez, Luis</creator><creator>Nogueira, Xesús</creator><creator>Khelladi, Sofiane</creator><creator>Chassaing, Jean-Camille</creator><creator>Colominas, Ignasi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9005-1375</orcidid><orcidid>https://orcid.org/0000-0002-6500-2109</orcidid><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid></search><sort><creationdate>20140815</creationdate><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><author>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Benchmarking</topic><topic>Biomechanics</topic><topic>Collocated grids</topic><topic>Discretization</topic><topic>Finite volume method</topic><topic>Fluxes</topic><topic>High-order methods</topic><topic>Incompressible Navier–Stokes equations</topic><topic>Interpolation</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Momentum Interpolation Method</topic><topic>Moving Least Squares</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Unstructured grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, Luis</creatorcontrib><creatorcontrib>Nogueira, Xesús</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><creatorcontrib>Colominas, Ignasi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, Luis</au><au>Nogueira, Xesús</au><au>Khelladi, Sofiane</au><au>Chassaing, Jean-Camille</au><au>Colominas, Ignasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>278</volume><spage>883</spage><epage>901</epage><pages>883-901</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.06.028</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9005-1375</orcidid><orcidid>https://orcid.org/0000-0002-6500-2109</orcidid><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2014-08, Vol.278, p.883-901 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01459732v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acoustics Benchmarking Biomechanics Collocated grids Discretization Finite volume method Fluxes High-order methods Incompressible Navier–Stokes equations Interpolation Least squares method Mathematical analysis Mechanics Momentum Interpolation Method Moving Least Squares Navier-Stokes equations Physics Unstructured grids |
title | A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20higher-order%20finite%20volume%20method%20based%20on%20Moving%20Least%20Squares%20for%20the%20resolution%20of%20the%20incompressible%20Navier%E2%80%93Stokes%20equations%20on%20unstructured%20grids&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ram%C3%ADrez,%20Luis&rft.date=2014-08-15&rft.volume=278&rft.spage=883&rft.epage=901&rft.pages=883-901&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.06.028&rft_dat=%3Cproquest_hal_p%3E1677955310%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620076677&rft_id=info:pmid/&rft_els_id=S004578251400214X&rfr_iscdi=true |