A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids

In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2014-08, Vol.278, p.883-901
Hauptverfasser: Ramírez, Luis, Nogueira, Xesús, Khelladi, Sofiane, Chassaing, Jean-Camille, Colominas, Ignasi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue
container_start_page 883
container_title Computer methods in applied mechanics and engineering
container_volume 278
creator Ramírez, Luis
Nogueira, Xesús
Khelladi, Sofiane
Chassaing, Jean-Camille
Colominas, Ignasi
description In this work a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.
doi_str_mv 10.1016/j.cma.2014.06.028
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01459732v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251400214X</els_id><sourcerecordid>1677955310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</originalsourceid><addsrcrecordid>eNqNkbGO1DAURSMEEsPCB9C5hCLBz5nYjqhGK2CRBigWasuxXyYeknjWdgbR8Q_0fBxfgsMgSoQbW1fnvmfdWxRPgVZAgb84VmbSFaOwrSivKJP3ig1I0ZYManm_2FC6bUohWfOweBTjkeYjgW2KHzsy4xcyuMOAofTBYiC9m11CcvbjMiGZMA3ekk5HtMTP5J0_u_lA9qhjIrd3iw4YSe8DSQOS_M6u5DLn-9-Km42fTlmPrhuRvNdnh-Hnt--3yX_ORswDVjyuo5c5prCYtIS86hCcjY-LB70eIz75c18Vn16_-nh9U-4_vHl7vduXZsvrVNYNMA7AwRqAtuNtJ1ELYXtDddPWujaaNwYYs0xa20nBQWuh-77tNJWI9VXx_DJ30KM6BTfp8FV57dTNbq9WLQfbtKJmZ8jsswt7Cv5uwZjU5KLBcdQz-iUq4EK0TVMD_Q-UUSp4NmQULqgJPsaA_d9vAFVrxeqocsVqrVhRrnLF2fPy4sEczZqrisbhbNC6gCYp690_3L8AohmySw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620076677</pqid></control><display><type>article</type><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</creator><creatorcontrib>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</creatorcontrib><description>In this work a new higher-order (&gt;2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.06.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Benchmarking ; Biomechanics ; Collocated grids ; Discretization ; Finite volume method ; Fluxes ; High-order methods ; Incompressible Navier–Stokes equations ; Interpolation ; Least squares method ; Mathematical analysis ; Mechanics ; Momentum Interpolation Method ; Moving Least Squares ; Navier-Stokes equations ; Physics ; Unstructured grids</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-08, Vol.278, p.883-901</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</citedby><cites>FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</cites><orcidid>0000-0002-9005-1375 ; 0000-0002-6500-2109 ; 0000-0002-6221-2303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2014.06.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01459732$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez, Luis</creatorcontrib><creatorcontrib>Nogueira, Xesús</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><creatorcontrib>Colominas, Ignasi</creatorcontrib><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><title>Computer methods in applied mechanics and engineering</title><description>In this work a new higher-order (&gt;2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</description><subject>Acoustics</subject><subject>Benchmarking</subject><subject>Biomechanics</subject><subject>Collocated grids</subject><subject>Discretization</subject><subject>Finite volume method</subject><subject>Fluxes</subject><subject>High-order methods</subject><subject>Incompressible Navier–Stokes equations</subject><subject>Interpolation</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Momentum Interpolation Method</subject><subject>Moving Least Squares</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Unstructured grids</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkbGO1DAURSMEEsPCB9C5hCLBz5nYjqhGK2CRBigWasuxXyYeknjWdgbR8Q_0fBxfgsMgSoQbW1fnvmfdWxRPgVZAgb84VmbSFaOwrSivKJP3ig1I0ZYManm_2FC6bUohWfOweBTjkeYjgW2KHzsy4xcyuMOAofTBYiC9m11CcvbjMiGZMA3ekk5HtMTP5J0_u_lA9qhjIrd3iw4YSe8DSQOS_M6u5DLn-9-Km42fTlmPrhuRvNdnh-Hnt--3yX_ORswDVjyuo5c5prCYtIS86hCcjY-LB70eIz75c18Vn16_-nh9U-4_vHl7vduXZsvrVNYNMA7AwRqAtuNtJ1ELYXtDddPWujaaNwYYs0xa20nBQWuh-77tNJWI9VXx_DJ30KM6BTfp8FV57dTNbq9WLQfbtKJmZ8jsswt7Cv5uwZjU5KLBcdQz-iUq4EK0TVMD_Q-UUSp4NmQULqgJPsaA_d9vAFVrxeqocsVqrVhRrnLF2fPy4sEczZqrisbhbNC6gCYp690_3L8AohmySw</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Ramírez, Luis</creator><creator>Nogueira, Xesús</creator><creator>Khelladi, Sofiane</creator><creator>Chassaing, Jean-Camille</creator><creator>Colominas, Ignasi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9005-1375</orcidid><orcidid>https://orcid.org/0000-0002-6500-2109</orcidid><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid></search><sort><creationdate>20140815</creationdate><title>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</title><author>Ramírez, Luis ; Nogueira, Xesús ; Khelladi, Sofiane ; Chassaing, Jean-Camille ; Colominas, Ignasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-351261161dc119b69b8ea77dfc0a593a3ca65c122d28ddb8761aa7aff9ba08ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Benchmarking</topic><topic>Biomechanics</topic><topic>Collocated grids</topic><topic>Discretization</topic><topic>Finite volume method</topic><topic>Fluxes</topic><topic>High-order methods</topic><topic>Incompressible Navier–Stokes equations</topic><topic>Interpolation</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Momentum Interpolation Method</topic><topic>Moving Least Squares</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Unstructured grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, Luis</creatorcontrib><creatorcontrib>Nogueira, Xesús</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><creatorcontrib>Colominas, Ignasi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, Luis</au><au>Nogueira, Xesús</au><au>Khelladi, Sofiane</au><au>Chassaing, Jean-Camille</au><au>Colominas, Ignasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>278</volume><spage>883</spage><epage>901</epage><pages>883-901</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this work a new higher-order (&gt;2) accurate finite volume method for the resolution of the incompressible Navier–Stokes equations on unstructured grids is presented. The formulation is based on the use of Moving Least Squares (MLS) approximants. Third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy and performance of the proposed method is demonstrated by solving different steady and unsteady benchmark problems on unstructured grids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.06.028</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9005-1375</orcidid><orcidid>https://orcid.org/0000-0002-6500-2109</orcidid><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2014-08, Vol.278, p.883-901
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01459732v1
source Elsevier ScienceDirect Journals Complete
subjects Acoustics
Benchmarking
Biomechanics
Collocated grids
Discretization
Finite volume method
Fluxes
High-order methods
Incompressible Navier–Stokes equations
Interpolation
Least squares method
Mathematical analysis
Mechanics
Momentum Interpolation Method
Moving Least Squares
Navier-Stokes equations
Physics
Unstructured grids
title A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20higher-order%20finite%20volume%20method%20based%20on%20Moving%20Least%20Squares%20for%20the%20resolution%20of%20the%20incompressible%20Navier%E2%80%93Stokes%20equations%20on%20unstructured%20grids&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ram%C3%ADrez,%20Luis&rft.date=2014-08-15&rft.volume=278&rft.spage=883&rft.epage=901&rft.pages=883-901&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.06.028&rft_dat=%3Cproquest_hal_p%3E1677955310%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620076677&rft_id=info:pmid/&rft_els_id=S004578251400214X&rfr_iscdi=true