Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation

We investigate the contribution of the natural convective transport in the vapor phase on the evaporation rate of an evaporating sessile droplet. When comparing the experimental data with the quasi-steady diffusion-controlled evaporation model, an increasing deviation with substrate temperature that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-02, Vol.102 (6)
Hauptverfasser: Carle, F., Sobac, B., Brutin, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 102
creator Carle, F.
Sobac, B.
Brutin, D.
description We investigate the contribution of the natural convective transport in the vapor phase on the evaporation rate of an evaporating sessile droplet. When comparing the experimental data with the quasi-steady diffusion-controlled evaporation model, an increasing deviation with substrate temperature that was attributed to the effect of the natural convection on the vapor field has been recently highlighted. To validate this analysis, we present experimental results obtained with two gravity levels: 1 g and μg. The contribution of the natural convection is analyzed with the Grashof number, and an empirical model is developed combining diffusive and convective transport.
doi_str_mv 10.1063/1.4792058
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01459485v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1318691128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2664918423b8f9e3d7374e141a31fa3f03aefd5162b854e05c569e2bcbb5478d3</originalsourceid><addsrcrecordid>eNpFkEFLwzAUx4MoOKcHv0GOeujMa5I2PY4xnTDwoueQpq8s0jU1yYp-ezs29PR4__fjB-9PyD2wBbCCP8FClFXOpLogM2BlmXEAdUlmjDGeFZWEa3IT4-e0ypzzGXHr7wGD22OfTEdxdA32FqlvadohNWnv47CbAEut70e0yY1IUzB9HHxIxzAFVx-S8z1NnkaM0XVIm-CHDtMkNBNnjudbctWaLuLdec7Jx_P6fbXJtm8vr6vlNrO8yFOWF4WoQImc16qtkDclLwWCAMOhNbxl3GDbSCjyWkmBTFpZVJjXtq6lKFXD5-Tx5N2ZTg_Tayb8aG-c3iy3-pgxELISSo4wsQ8ndgj-64Ax6b2LFrvO9OgPUQMHVVQAufrX2uBjDNj-uYHpY_Ua9Ll6_gvfJHcI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318691128</pqid></control><display><type>article</type><title>Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Carle, F. ; Sobac, B. ; Brutin, D.</creator><creatorcontrib>Carle, F. ; Sobac, B. ; Brutin, D.</creatorcontrib><description>We investigate the contribution of the natural convective transport in the vapor phase on the evaporation rate of an evaporating sessile droplet. When comparing the experimental data with the quasi-steady diffusion-controlled evaporation model, an increasing deviation with substrate temperature that was attributed to the effect of the natural convection on the vapor field has been recently highlighted. To validate this analysis, we present experimental results obtained with two gravity levels: 1 g and μg. The contribution of the natural convection is analyzed with the Grashof number, and an empirical model is developed combining diffusive and convective transport.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4792058</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Physics</subject><ispartof>Applied physics letters, 2013-02, Vol.102 (6)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-2664918423b8f9e3d7374e141a31fa3f03aefd5162b854e05c569e2bcbb5478d3</citedby><cites>FETCH-LOGICAL-c362t-2664918423b8f9e3d7374e141a31fa3f03aefd5162b854e05c569e2bcbb5478d3</cites><orcidid>0000-0002-0006-6822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01459485$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carle, F.</creatorcontrib><creatorcontrib>Sobac, B.</creatorcontrib><creatorcontrib>Brutin, D.</creatorcontrib><title>Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation</title><title>Applied physics letters</title><description>We investigate the contribution of the natural convective transport in the vapor phase on the evaporation rate of an evaporating sessile droplet. When comparing the experimental data with the quasi-steady diffusion-controlled evaporation model, an increasing deviation with substrate temperature that was attributed to the effect of the natural convection on the vapor field has been recently highlighted. To validate this analysis, we present experimental results obtained with two gravity levels: 1 g and μg. The contribution of the natural convection is analyzed with the Grashof number, and an empirical model is developed combining diffusive and convective transport.</description><subject>Physics</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAUx4MoOKcHv0GOeujMa5I2PY4xnTDwoueQpq8s0jU1yYp-ezs29PR4__fjB-9PyD2wBbCCP8FClFXOpLogM2BlmXEAdUlmjDGeFZWEa3IT4-e0ypzzGXHr7wGD22OfTEdxdA32FqlvadohNWnv47CbAEut70e0yY1IUzB9HHxIxzAFVx-S8z1NnkaM0XVIm-CHDtMkNBNnjudbctWaLuLdec7Jx_P6fbXJtm8vr6vlNrO8yFOWF4WoQImc16qtkDclLwWCAMOhNbxl3GDbSCjyWkmBTFpZVJjXtq6lKFXD5-Tx5N2ZTg_Tayb8aG-c3iy3-pgxELISSo4wsQ8ndgj-64Ax6b2LFrvO9OgPUQMHVVQAufrX2uBjDNj-uYHpY_Ua9Ll6_gvfJHcI</recordid><startdate>20130211</startdate><enddate>20130211</enddate><creator>Carle, F.</creator><creator>Sobac, B.</creator><creator>Brutin, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0006-6822</orcidid></search><sort><creationdate>20130211</creationdate><title>Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation</title><author>Carle, F. ; Sobac, B. ; Brutin, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2664918423b8f9e3d7374e141a31fa3f03aefd5162b854e05c569e2bcbb5478d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carle, F.</creatorcontrib><creatorcontrib>Sobac, B.</creatorcontrib><creatorcontrib>Brutin, D.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carle, F.</au><au>Sobac, B.</au><au>Brutin, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation</atitle><jtitle>Applied physics letters</jtitle><date>2013-02-11</date><risdate>2013</risdate><volume>102</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We investigate the contribution of the natural convective transport in the vapor phase on the evaporation rate of an evaporating sessile droplet. When comparing the experimental data with the quasi-steady diffusion-controlled evaporation model, an increasing deviation with substrate temperature that was attributed to the effect of the natural convection on the vapor field has been recently highlighted. To validate this analysis, we present experimental results obtained with two gravity levels: 1 g and μg. The contribution of the natural convection is analyzed with the Grashof number, and an empirical model is developed combining diffusive and convective transport.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.4792058</doi><orcidid>https://orcid.org/0000-0002-0006-6822</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-02, Vol.102 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_hal_primary_oai_HAL_hal_01459485v1
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Physics
title Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20of%20the%20atmospheric%20convective%20transport%20contribution%20to%20sessile%20droplet%20evaporation&rft.jtitle=Applied%20physics%20letters&rft.au=Carle,%20F.&rft.date=2013-02-11&rft.volume=102&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4792058&rft_dat=%3Cproquest_hal_p%3E1318691128%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318691128&rft_id=info:pmid/&rfr_iscdi=true