Modeling blast waves, gas and particles dispersion in urban and hilly ground areas
•An hydrodynamic model involving large cells containing obstacles is built.•A new model for particles flow, including turbulent effects is developed.•A 3D code predicting dispersion phenomena in heterogeneous media is presented.•Numerical elevation data are used to rebuild the topography of the cons...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2014-09, Vol.280, p.436-449 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | |
container_start_page | 436 |
container_title | Journal of hazardous materials |
container_volume | 280 |
creator | Hank, S. Saurel, R. Le Métayer, O. Lapébie, E. |
description | •An hydrodynamic model involving large cells containing obstacles is built.•A new model for particles flow, including turbulent effects is developed.•A 3D code predicting dispersion phenomena in heterogeneous media is presented.•Numerical elevation data are used to rebuild the topography of the considered media.
The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations. |
doi_str_mv | 10.1016/j.jhazmat.2014.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01459317v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389414006670</els_id><sourcerecordid>1609100477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2257e8c83eec8420e918d9060797349411c128bde1f131392056e088439dd2773</originalsourceid><addsrcrecordid>eNqFkMFuEzEQhi0EoqHwCKC9IIHELjO2d9c-VVUFFCkVEoKz5diTxJGzG-zdoPL03TShPfY08ujz_48-xt4iVAjYfN5Um7X9t7VDxQFlBaoCxGdshqoVpRCiec5mIECWQml5xl7lvAEAbGv5kp3xGrWuQczYz5veUwzdqlhEm4fir91T_lSsbC5s54udTUNwkXLhQ95RyqHvitAVY1rY7p5Yhxhvi1Xqx-lhE9n8mr1Y2pjpzWmes99fv_y6ui7nP759v7qcl05yPZSc1y0ppwSRU5IDaVReQwOtboXUEtEhVwtPuESBQnOoGwKlpNDe87YV5-zjMXdto9mlsLXp1vQ2mOvLuTnsJi-1FtjucWI_HNld6v-MlAezDdlRjLajfswGG9AIIO9j6yPqUp9zouVDNoI5qDcbc1JvDuoNqKnpUPHuVDEutuQffv13PQHvT4DNzsZlsp0L-ZFTqkYh1MRdHDma5O0DJZNdoM6RD4ncYHwfnjjlDuEDoaY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609100477</pqid></control><display><type>article</type><title>Modeling blast waves, gas and particles dispersion in urban and hilly ground areas</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hank, S. ; Saurel, R. ; Le Métayer, O. ; Lapébie, E.</creator><creatorcontrib>Hank, S. ; Saurel, R. ; Le Métayer, O. ; Lapébie, E.</creatorcontrib><description>•An hydrodynamic model involving large cells containing obstacles is built.•A new model for particles flow, including turbulent effects is developed.•A 3D code predicting dispersion phenomena in heterogeneous media is presented.•Numerical elevation data are used to rebuild the topography of the considered media.
The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2014.08.011</identifier><identifier>PMID: 25199503</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Chemical engineering ; Cities ; Compressible flow ; Exact sciences and technology ; Explosions ; Fluid dispersion ; Gases ; Heat and mass transfer. Packings, plates ; Heterogeneous media ; Hydrodynamics of contact apparatus ; Models, Theoretical ; Particulate Matter ; Physics ; Pollution ; Two-phase flow</subject><ispartof>Journal of hazardous materials, 2014-09, Vol.280, p.436-449</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2257e8c83eec8420e918d9060797349411c128bde1f131392056e088439dd2773</citedby><cites>FETCH-LOGICAL-c429t-2257e8c83eec8420e918d9060797349411c128bde1f131392056e088439dd2773</cites><orcidid>0000-0001-5838-2003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389414006670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28851338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25199503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01459317$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hank, S.</creatorcontrib><creatorcontrib>Saurel, R.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><creatorcontrib>Lapébie, E.</creatorcontrib><title>Modeling blast waves, gas and particles dispersion in urban and hilly ground areas</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>•An hydrodynamic model involving large cells containing obstacles is built.•A new model for particles flow, including turbulent effects is developed.•A 3D code predicting dispersion phenomena in heterogeneous media is presented.•Numerical elevation data are used to rebuild the topography of the considered media.
The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Cities</subject><subject>Compressible flow</subject><subject>Exact sciences and technology</subject><subject>Explosions</subject><subject>Fluid dispersion</subject><subject>Gases</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heterogeneous media</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Models, Theoretical</subject><subject>Particulate Matter</subject><subject>Physics</subject><subject>Pollution</subject><subject>Two-phase flow</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFuEzEQhi0EoqHwCKC9IIHELjO2d9c-VVUFFCkVEoKz5diTxJGzG-zdoPL03TShPfY08ujz_48-xt4iVAjYfN5Um7X9t7VDxQFlBaoCxGdshqoVpRCiec5mIECWQml5xl7lvAEAbGv5kp3xGrWuQczYz5veUwzdqlhEm4fir91T_lSsbC5s54udTUNwkXLhQ95RyqHvitAVY1rY7p5Yhxhvi1Xqx-lhE9n8mr1Y2pjpzWmes99fv_y6ui7nP759v7qcl05yPZSc1y0ppwSRU5IDaVReQwOtboXUEtEhVwtPuESBQnOoGwKlpNDe87YV5-zjMXdto9mlsLXp1vQ2mOvLuTnsJi-1FtjucWI_HNld6v-MlAezDdlRjLajfswGG9AIIO9j6yPqUp9zouVDNoI5qDcbc1JvDuoNqKnpUPHuVDEutuQffv13PQHvT4DNzsZlsp0L-ZFTqkYh1MRdHDma5O0DJZNdoM6RD4ncYHwfnjjlDuEDoaY</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Hank, S.</creator><creator>Saurel, R.</creator><creator>Le Métayer, O.</creator><creator>Lapébie, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5838-2003</orcidid></search><sort><creationdate>20140915</creationdate><title>Modeling blast waves, gas and particles dispersion in urban and hilly ground areas</title><author>Hank, S. ; Saurel, R. ; Le Métayer, O. ; Lapébie, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2257e8c83eec8420e918d9060797349411c128bde1f131392056e088439dd2773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Cities</topic><topic>Compressible flow</topic><topic>Exact sciences and technology</topic><topic>Explosions</topic><topic>Fluid dispersion</topic><topic>Gases</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heterogeneous media</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Models, Theoretical</topic><topic>Particulate Matter</topic><topic>Physics</topic><topic>Pollution</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hank, S.</creatorcontrib><creatorcontrib>Saurel, R.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><creatorcontrib>Lapébie, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hank, S.</au><au>Saurel, R.</au><au>Le Métayer, O.</au><au>Lapébie, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling blast waves, gas and particles dispersion in urban and hilly ground areas</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>280</volume><spage>436</spage><epage>449</epage><pages>436-449</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>•An hydrodynamic model involving large cells containing obstacles is built.•A new model for particles flow, including turbulent effects is developed.•A 3D code predicting dispersion phenomena in heterogeneous media is presented.•Numerical elevation data are used to rebuild the topography of the considered media.
The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>25199503</pmid><doi>10.1016/j.jhazmat.2014.08.011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5838-2003</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2014-09, Vol.280, p.436-449 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01459317v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemical engineering Cities Compressible flow Exact sciences and technology Explosions Fluid dispersion Gases Heat and mass transfer. Packings, plates Heterogeneous media Hydrodynamics of contact apparatus Models, Theoretical Particulate Matter Physics Pollution Two-phase flow |
title | Modeling blast waves, gas and particles dispersion in urban and hilly ground areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20blast%20waves,%20gas%20and%20particles%20dispersion%20in%20urban%20and%20hilly%20ground%20areas&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Hank,%20S.&rft.date=2014-09-15&rft.volume=280&rft.spage=436&rft.epage=449&rft.pages=436-449&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2014.08.011&rft_dat=%3Cproquest_hal_p%3E1609100477%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609100477&rft_id=info:pmid/25199503&rft_els_id=S0304389414006670&rfr_iscdi=true |