Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer

This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2016-03, Vol.89 (3), p.1-9, Article 56
Hauptverfasser: Calvo, Florent, Magnin, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 89
creator Calvo, Florent
Magnin, Yann
description This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a ( T ) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.
doi_str_mv 10.1140/epjb/e2016-60839-6
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01455018v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530361693</galeid><sourcerecordid>A530361693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8b5e8cde64a93e5f69bbc5cf9f55cc4067744ee01d8dd869680391648ec9aacd3</originalsourceid><addsrcrecordid>eNp1kUtv3CAUha2qlZqm_QNdWeqqCydgHoOXo6hNIo0aqY81usaXGUY2TABXk39fJo7SZlEhxOXyHXTgVNVHSi4o5eQSD_v-EltCZSOJYl0jX1VnlDNetky-fq5b9bZ6l9KekIJSflbBt9mMCLG-n8HnearRWjQ51cHXeYenGScYazwewCdXuiYUxBmHPtfB1js8wjb4gvQhlmPvcnQD1lPwYYQHjO-rNxbGhB-e1vPq19cvP69ums3d9e3VetMY3srcqF6gMgNKDh1DYWXX90YY21khjOFErlacIxI6qGFQspOKsI5KrtB0AGZg59Xn5d4djPoQ3QTxQQdw-ma90aceoVwIQtVvWthPC3uI4X7GlPU-zLE8ImmqFFmtREtIoS4WagsjaudtyBFMGQNOzgSP1pX-WrDyxVR27K-FJ0FhMh7zFuaU9O2P7y_ZdmFNDClFtM-eKdGnTPUpU_2YqX7MVMsiYosoFdhvMf7j-_-qP_yNpiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880775200</pqid></control><display><type>article</type><title>Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer</title><source>SpringerNature Journals</source><creator>Calvo, Florent ; Magnin, Yann</creator><creatorcontrib>Calvo, Florent ; Magnin, Yann</creatorcontrib><description>This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a ( T ) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2016-60839-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Anharmonicity ; Boron ; Boron nitride ; Complex Systems ; Condensed Matter Physics ; Fluid- and Aerodynamics ; Lattice vibration ; Monolayers ; Monte Carlo methods ; Monte Carlo simulation ; Parameters ; Physics ; Physics and Astronomy ; Quantum mechanics ; Regular Article ; Solid State Physics ; Thermal expansion ; Thermal properties</subject><ispartof>The European physical journal. B, Condensed matter physics, 2016-03, Vol.89 (3), p.1-9, Article 56</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-8b5e8cde64a93e5f69bbc5cf9f55cc4067744ee01d8dd869680391648ec9aacd3</citedby><cites>FETCH-LOGICAL-c426t-8b5e8cde64a93e5f69bbc5cf9f55cc4067744ee01d8dd869680391648ec9aacd3</cites><orcidid>0000-0002-3621-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2016-60839-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2016-60839-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01455018$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo, Florent</creatorcontrib><creatorcontrib>Magnin, Yann</creatorcontrib><title>Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a ( T ) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.</description><subject>Analysis</subject><subject>Anharmonicity</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fluid- and Aerodynamics</subject><subject>Lattice vibration</subject><subject>Monolayers</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv3CAUha2qlZqm_QNdWeqqCydgHoOXo6hNIo0aqY81usaXGUY2TABXk39fJo7SZlEhxOXyHXTgVNVHSi4o5eQSD_v-EltCZSOJYl0jX1VnlDNetky-fq5b9bZ6l9KekIJSflbBt9mMCLG-n8HnearRWjQ51cHXeYenGScYazwewCdXuiYUxBmHPtfB1js8wjb4gvQhlmPvcnQD1lPwYYQHjO-rNxbGhB-e1vPq19cvP69ums3d9e3VetMY3srcqF6gMgNKDh1DYWXX90YY21khjOFErlacIxI6qGFQspOKsI5KrtB0AGZg59Xn5d4djPoQ3QTxQQdw-ma90aceoVwIQtVvWthPC3uI4X7GlPU-zLE8ImmqFFmtREtIoS4WagsjaudtyBFMGQNOzgSP1pX-WrDyxVR27K-FJ0FhMh7zFuaU9O2P7y_ZdmFNDClFtM-eKdGnTPUpU_2YqX7MVMsiYosoFdhvMf7j-_-qP_yNpiw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Calvo, Florent</creator><creator>Magnin, Yann</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3621-3046</orcidid></search><sort><creationdate>20160301</creationdate><title>Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer</title><author>Calvo, Florent ; Magnin, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8b5e8cde64a93e5f69bbc5cf9f55cc4067744ee01d8dd869680391648ec9aacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Anharmonicity</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fluid- and Aerodynamics</topic><topic>Lattice vibration</topic><topic>Monolayers</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo, Florent</creatorcontrib><creatorcontrib>Magnin, Yann</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo, Florent</au><au>Magnin, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>89</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>56</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a ( T ) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2016-60839-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3621-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2016-03, Vol.89 (3), p.1-9, Article 56
issn 1434-6028
1434-6036
language eng
recordid cdi_hal_primary_oai_HAL_hal_01455018v1
source SpringerNature Journals
subjects Analysis
Anharmonicity
Boron
Boron nitride
Complex Systems
Condensed Matter Physics
Fluid- and Aerodynamics
Lattice vibration
Monolayers
Monte Carlo methods
Monte Carlo simulation
Parameters
Physics
Physics and Astronomy
Quantum mechanics
Regular Article
Solid State Physics
Thermal expansion
Thermal properties
title Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20quantum%20effects%20on%20the%20thermal%20expansion%20coefficient%20of%20hexagonal%20boron%20nitride%20monolayer&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Calvo,%20Florent&rft.date=2016-03-01&rft.volume=89&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=56&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2016-60839-6&rft_dat=%3Cgale_hal_p%3EA530361693%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880775200&rft_id=info:pmid/&rft_galeid=A530361693&rfr_iscdi=true