Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate
The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2005-02, Vol.88 (2), p.511-526 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 2 |
container_start_page | 511 |
container_title | Journal of dairy science |
container_volume | 88 |
creator | Lopez, C. Lesieur, P. Bourgaux, C. Ollivon, M. |
description | The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1°C/ min from 60 to −10°C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5Å and a triple-chain length of 72Å stackings of α type, which are correlated to 2 exothermic peaks at 17.2 and 13.7°C, respectively. A time-dependent slow sub-α ↔α reversible transition is observed at −10°C. Subsequent heating at 2°C/min has shown numerous structural rearrangements of the α varieties into a single β′ form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (∼39°C), confirmed that cooling at 3°C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison. |
doi_str_mv | 10.3168/jds.S0022-0302(05)72713-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01453944v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022030205727132</els_id><sourcerecordid>892413451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-24bbcac3fd0d577f79eaf1e346a9aed0c7e6251abaf7ce9a2f8611cef8ea7beb3</originalsourceid><addsrcrecordid>eNqNkVtv0zAUgC0EYl3hL6CABGIPKb7EcfJYKsYmFSHR8WydOMeLS5psdlK0fz9nrTqJJyRL1rG-c_NHyHtGF4LlxZdtHRYbSjlPqaD8M5UXiismUv6CzJjkMhWsLF6S2Qk5I-chbGPIOJWvyRmTuRSS5TOyuWnQ76BNoKuTzeBHM4w-hl-xgb3rfdLbZNk1D7Xvx5D8cO2f5BKGRSIWyXVn2xE7gxOz6vvWdbfJLxjwDXlloQ349njPye_Lbzerq3T98_v1arlOjczUkPKsqgwYYWtaS6WsKhEsQ5HlUALW1CjMuWRQgVUGS-C2yBkzaAsEVWEl5uTiULeBVt95twP_oHtw-mq51tMbZZkUZZbtWWQ_Hdg739-PGAa9c8Fg20KHcTOdK6HodObkwz_gth99F_fQrJSq5AXnESoPkPF9CB7tqT2jelKkoyL9pEhP_6-p1E-K9JT77thgrHZYP2cenUTg4xGAYKC1HjrjwjOXZzktI3viGnfb_HUedYgi21iWTe2LQnMt2bT66sBhdLF36HUwbvJWxxwz6Lp3_zH2I96JvBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195792822</pqid></control><display><type>article</type><title>Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Lopez, C. ; Lesieur, P. ; Bourgaux, C. ; Ollivon, M.</creator><creatorcontrib>Lopez, C. ; Lesieur, P. ; Bourgaux, C. ; Ollivon, M.</creatorcontrib><description>The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1°C/ min from 60 to −10°C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5Å and a triple-chain length of 72Å stackings of α type, which are correlated to 2 exothermic peaks at 17.2 and 13.7°C, respectively. A time-dependent slow sub-α ↔α reversible transition is observed at −10°C. Subsequent heating at 2°C/min has shown numerous structural rearrangements of the α varieties into a single β′ form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (∼39°C), confirmed that cooling at 3°C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.</description><identifier>ISSN: 0022-0302</identifier><identifier>EISSN: 1525-3198</identifier><identifier>DOI: 10.3168/jds.S0022-0302(05)72713-2</identifier><identifier>PMID: 15653516</identifier><identifier>CODEN: JDSCAE</identifier><language>eng</language><publisher>Savoy, IL: Elsevier Inc</publisher><subject>Agricultural sciences ; Animal productions ; Animals ; Biological and medical sciences ; Calorimetry, Differential Scanning ; Cold Temperature ; Crystallization ; differential scanning calorimetry ; Food industries ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Kinetics ; Life Sciences ; Lipids - chemistry ; Microscopy, Polarization ; Milk - chemistry ; Milk and cheese industries. Ice creams ; polymorphism ; Temperature ; Terrestrial animal productions ; Thermodynamics ; triacylglycerol ; Vertebrates ; x-ray diffraction</subject><ispartof>Journal of dairy science, 2005-02, Vol.88 (2), p.511-526</ispartof><rights>2005 American Dairy Science Association</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Dairy Science Association Feb 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-24bbcac3fd0d577f79eaf1e346a9aed0c7e6251abaf7ce9a2f8611cef8ea7beb3</citedby><cites>FETCH-LOGICAL-c547t-24bbcac3fd0d577f79eaf1e346a9aed0c7e6251abaf7ce9a2f8611cef8ea7beb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.3168/jds.S0022-0302(05)72713-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16460965$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15653516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01453944$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Lesieur, P.</creatorcontrib><creatorcontrib>Bourgaux, C.</creatorcontrib><creatorcontrib>Ollivon, M.</creatorcontrib><title>Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate</title><title>Journal of dairy science</title><addtitle>J Dairy Sci</addtitle><description>The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1°C/ min from 60 to −10°C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5Å and a triple-chain length of 72Å stackings of α type, which are correlated to 2 exothermic peaks at 17.2 and 13.7°C, respectively. A time-dependent slow sub-α ↔α reversible transition is observed at −10°C. Subsequent heating at 2°C/min has shown numerous structural rearrangements of the α varieties into a single β′ form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (∼39°C), confirmed that cooling at 3°C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.</description><subject>Agricultural sciences</subject><subject>Animal productions</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cold Temperature</subject><subject>Crystallization</subject><subject>differential scanning calorimetry</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipids - chemistry</subject><subject>Microscopy, Polarization</subject><subject>Milk - chemistry</subject><subject>Milk and cheese industries. Ice creams</subject><subject>polymorphism</subject><subject>Temperature</subject><subject>Terrestrial animal productions</subject><subject>Thermodynamics</subject><subject>triacylglycerol</subject><subject>Vertebrates</subject><subject>x-ray diffraction</subject><issn>0022-0302</issn><issn>1525-3198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVtv0zAUgC0EYl3hL6CABGIPKb7EcfJYKsYmFSHR8WydOMeLS5psdlK0fz9nrTqJJyRL1rG-c_NHyHtGF4LlxZdtHRYbSjlPqaD8M5UXiismUv6CzJjkMhWsLF6S2Qk5I-chbGPIOJWvyRmTuRSS5TOyuWnQ76BNoKuTzeBHM4w-hl-xgb3rfdLbZNk1D7Xvx5D8cO2f5BKGRSIWyXVn2xE7gxOz6vvWdbfJLxjwDXlloQ349njPye_Lbzerq3T98_v1arlOjczUkPKsqgwYYWtaS6WsKhEsQ5HlUALW1CjMuWRQgVUGS-C2yBkzaAsEVWEl5uTiULeBVt95twP_oHtw-mq51tMbZZkUZZbtWWQ_Hdg739-PGAa9c8Fg20KHcTOdK6HodObkwz_gth99F_fQrJSq5AXnESoPkPF9CB7tqT2jelKkoyL9pEhP_6-p1E-K9JT77thgrHZYP2cenUTg4xGAYKC1HjrjwjOXZzktI3viGnfb_HUedYgi21iWTe2LQnMt2bT66sBhdLF36HUwbvJWxxwz6Lp3_zH2I96JvBY</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Lopez, C.</creator><creator>Lesieur, P.</creator><creator>Bourgaux, C.</creator><creator>Ollivon, M.</creator><general>Elsevier Inc</general><general>Am Dairy Sci Assoc</general><general>American Dairy Science Association</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0X</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20050201</creationdate><title>Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate</title><author>Lopez, C. ; Lesieur, P. ; Bourgaux, C. ; Ollivon, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-24bbcac3fd0d577f79eaf1e346a9aed0c7e6251abaf7ce9a2f8611cef8ea7beb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agricultural sciences</topic><topic>Animal productions</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cold Temperature</topic><topic>Crystallization</topic><topic>differential scanning calorimetry</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipids - chemistry</topic><topic>Microscopy, Polarization</topic><topic>Milk - chemistry</topic><topic>Milk and cheese industries. Ice creams</topic><topic>polymorphism</topic><topic>Temperature</topic><topic>Terrestrial animal productions</topic><topic>Thermodynamics</topic><topic>triacylglycerol</topic><topic>Vertebrates</topic><topic>x-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Lesieur, P.</creatorcontrib><creatorcontrib>Bourgaux, C.</creatorcontrib><creatorcontrib>Ollivon, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of dairy science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, C.</au><au>Lesieur, P.</au><au>Bourgaux, C.</au><au>Ollivon, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate</atitle><jtitle>Journal of dairy science</jtitle><addtitle>J Dairy Sci</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>88</volume><issue>2</issue><spage>511</spage><epage>526</epage><pages>511-526</pages><issn>0022-0302</issn><eissn>1525-3198</eissn><coden>JDSCAE</coden><abstract>The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1°C/ min from 60 to −10°C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5Å and a triple-chain length of 72Å stackings of α type, which are correlated to 2 exothermic peaks at 17.2 and 13.7°C, respectively. A time-dependent slow sub-α ↔α reversible transition is observed at −10°C. Subsequent heating at 2°C/min has shown numerous structural rearrangements of the α varieties into a single β′ form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (∼39°C), confirmed that cooling at 3°C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.</abstract><cop>Savoy, IL</cop><pub>Elsevier Inc</pub><pmid>15653516</pmid><doi>10.3168/jds.S0022-0302(05)72713-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0302 |
ispartof | Journal of dairy science, 2005-02, Vol.88 (2), p.511-526 |
issn | 0022-0302 1525-3198 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01453944v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Free E-Journal (出版社公開部分のみ) |
subjects | Agricultural sciences Animal productions Animals Biological and medical sciences Calorimetry, Differential Scanning Cold Temperature Crystallization differential scanning calorimetry Food industries Fundamental and applied biological sciences. Psychology Hot Temperature Kinetics Life Sciences Lipids - chemistry Microscopy, Polarization Milk - chemistry Milk and cheese industries. Ice creams polymorphism Temperature Terrestrial animal productions Thermodynamics triacylglycerol Vertebrates x-ray diffraction |
title | Thermal and Structural Behavior of Anhydrous Milk Fat. 3. Influence of Cooling Rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Structural%20Behavior%20of%20Anhydrous%20Milk%20Fat.%203.%20Influence%20of%20Cooling%20Rate&rft.jtitle=Journal%20of%20dairy%20science&rft.au=Lopez,%20C.&rft.date=2005-02-01&rft.volume=88&rft.issue=2&rft.spage=511&rft.epage=526&rft.pages=511-526&rft.issn=0022-0302&rft.eissn=1525-3198&rft.coden=JDSCAE&rft_id=info:doi/10.3168/jds.S0022-0302(05)72713-2&rft_dat=%3Cproquest_hal_p%3E892413451%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195792822&rft_id=info:pmid/15653516&rft_els_id=S0022030205727132&rfr_iscdi=true |