Grid solution of problem with unilateral constraints
The present study deals with the solution of a problem, defined in a three-dimensional domain, arising in fluid mechanics. Such problem is modelled with unilateral constraints on the boundary. Then, the problem to solve consists in minimizing a functional in a closed convex set. The characterization...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2017-08, Vol.75 (4), p.879-908 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 908 |
---|---|
container_issue | 4 |
container_start_page | 879 |
container_title | Numerical algorithms |
container_volume | 75 |
creator | Chau, M. Laouar, A. Garcia, T. Spiteri, P. |
description | The present study deals with the solution of a problem, defined in a three-dimensional domain, arising in fluid mechanics. Such problem is modelled with unilateral constraints on the boundary. Then, the problem to solve consists in minimizing a functional in a closed convex set. The characterization of the solution leads to solve a time-dependent variational inequality. An implicit scheme is used for the discretization of the time-dependent part of the operator and so we have to solve a sequence of stationary elliptic problems. For the solution of each stationary problem, an equivalent form of a minimization problem is formulated as the solution of a multivalued equation, obtained by the perturbation of the previous stationary elliptic operator by a diagonal monotone maximal multivalued operator. The spatial discretization of such problem by appropriate scheme leads to the solution of large scale algebraic systems. According to the size of these systems, parallel iterative asynchronous and synchronous methods are carried out on distributed architectures; in the present study, methods without and with overlapping like Schwarz alternating methods are considered. The convergence of the parallel iterative algorithms is analysed by contraction approaches. Finally, the parallel experiments are presented. |
doi_str_mv | 10.1007/s11075-016-0224-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01450772v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918491102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b793e3de67d89bd193da10ee53dd7e1b6850e4a0bde6a9d15b7f6ca2e932f5023</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeCJw_RmbRJmuOy6K6w4EXPIW1St0u3WZNW8e3NUtGTpxmG7_8YfkKuEe4QQN5HRJCcAgoKjBVUnJAZcsmoYoKfph1QUsxVeU4uYtwBpBSTM1KsQmuz6LtxaH2f-SY7BF91bp99tsM2G_u2M4MLpstq38chmLYf4iU5a0wX3dXPnJPXx4eX5ZpunldPy8WG1gWDgVZS5S63Tkhbqsqiyq1BcI7n1kqHlSg5uMJAlRCjLPJKNqI2zKmcNRxYPie3k3drOn0I7d6EL-1Nq9eLjT7eAAsOUrIPTOzNxKb_30cXB73zY-jTe5opLAuVCjoacaLq4GMMrvnVIuhjkXoqMpmFPhapRcqwKRMT27-58Gf-P_QN6sR0lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918491102</pqid></control><display><type>article</type><title>Grid solution of problem with unilateral constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Chau, M. ; Laouar, A. ; Garcia, T. ; Spiteri, P.</creator><creatorcontrib>Chau, M. ; Laouar, A. ; Garcia, T. ; Spiteri, P.</creatorcontrib><description>The present study deals with the solution of a problem, defined in a three-dimensional domain, arising in fluid mechanics. Such problem is modelled with unilateral constraints on the boundary. Then, the problem to solve consists in minimizing a functional in a closed convex set. The characterization of the solution leads to solve a time-dependent variational inequality. An implicit scheme is used for the discretization of the time-dependent part of the operator and so we have to solve a sequence of stationary elliptic problems. For the solution of each stationary problem, an equivalent form of a minimization problem is formulated as the solution of a multivalued equation, obtained by the perturbation of the previous stationary elliptic operator by a diagonal monotone maximal multivalued operator. The spatial discretization of such problem by appropriate scheme leads to the solution of large scale algebraic systems. According to the size of these systems, parallel iterative asynchronous and synchronous methods are carried out on distributed architectures; in the present study, methods without and with overlapping like Schwarz alternating methods are considered. The convergence of the parallel iterative algorithms is analysed by contraction approaches. Finally, the parallel experiments are presented.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-016-0224-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Constraint modelling ; Convexity ; Decomposition ; Discretization ; Distributed, Parallel, and Cluster Computing ; Fluid mechanics ; Iterative algorithms ; Iterative methods ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Modeling and Simulation ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Partial differential equations ; Theory of Computation ; Time dependence</subject><ispartof>Numerical algorithms, 2017-08, Vol.75 (4), p.879-908</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b793e3de67d89bd193da10ee53dd7e1b6850e4a0bde6a9d15b7f6ca2e932f5023</citedby><cites>FETCH-LOGICAL-c420t-b793e3de67d89bd193da10ee53dd7e1b6850e4a0bde6a9d15b7f6ca2e932f5023</cites><orcidid>0000-0003-1875-7020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-016-0224-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-016-0224-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01450772$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chau, M.</creatorcontrib><creatorcontrib>Laouar, A.</creatorcontrib><creatorcontrib>Garcia, T.</creatorcontrib><creatorcontrib>Spiteri, P.</creatorcontrib><title>Grid solution of problem with unilateral constraints</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>The present study deals with the solution of a problem, defined in a three-dimensional domain, arising in fluid mechanics. Such problem is modelled with unilateral constraints on the boundary. Then, the problem to solve consists in minimizing a functional in a closed convex set. The characterization of the solution leads to solve a time-dependent variational inequality. An implicit scheme is used for the discretization of the time-dependent part of the operator and so we have to solve a sequence of stationary elliptic problems. For the solution of each stationary problem, an equivalent form of a minimization problem is formulated as the solution of a multivalued equation, obtained by the perturbation of the previous stationary elliptic operator by a diagonal monotone maximal multivalued operator. The spatial discretization of such problem by appropriate scheme leads to the solution of large scale algebraic systems. According to the size of these systems, parallel iterative asynchronous and synchronous methods are carried out on distributed architectures; in the present study, methods without and with overlapping like Schwarz alternating methods are considered. The convergence of the parallel iterative algorithms is analysed by contraction approaches. Finally, the parallel experiments are presented.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Convexity</subject><subject>Decomposition</subject><subject>Discretization</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Fluid mechanics</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Modeling and Simulation</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Theory of Computation</subject><subject>Time dependence</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLeCJw_RmbRJmuOy6K6w4EXPIW1St0u3WZNW8e3NUtGTpxmG7_8YfkKuEe4QQN5HRJCcAgoKjBVUnJAZcsmoYoKfph1QUsxVeU4uYtwBpBSTM1KsQmuz6LtxaH2f-SY7BF91bp99tsM2G_u2M4MLpstq38chmLYf4iU5a0wX3dXPnJPXx4eX5ZpunldPy8WG1gWDgVZS5S63Tkhbqsqiyq1BcI7n1kqHlSg5uMJAlRCjLPJKNqI2zKmcNRxYPie3k3drOn0I7d6EL-1Nq9eLjT7eAAsOUrIPTOzNxKb_30cXB73zY-jTe5opLAuVCjoacaLq4GMMrvnVIuhjkXoqMpmFPhapRcqwKRMT27-58Gf-P_QN6sR0lw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Chau, M.</creator><creator>Laouar, A.</creator><creator>Garcia, T.</creator><creator>Spiteri, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1875-7020</orcidid></search><sort><creationdate>20170801</creationdate><title>Grid solution of problem with unilateral constraints</title><author>Chau, M. ; Laouar, A. ; Garcia, T. ; Spiteri, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b793e3de67d89bd193da10ee53dd7e1b6850e4a0bde6a9d15b7f6ca2e932f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Convexity</topic><topic>Decomposition</topic><topic>Discretization</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Fluid mechanics</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Modeling and Simulation</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Theory of Computation</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chau, M.</creatorcontrib><creatorcontrib>Laouar, A.</creatorcontrib><creatorcontrib>Garcia, T.</creatorcontrib><creatorcontrib>Spiteri, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chau, M.</au><au>Laouar, A.</au><au>Garcia, T.</au><au>Spiteri, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid solution of problem with unilateral constraints</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>75</volume><issue>4</issue><spage>879</spage><epage>908</epage><pages>879-908</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>The present study deals with the solution of a problem, defined in a three-dimensional domain, arising in fluid mechanics. Such problem is modelled with unilateral constraints on the boundary. Then, the problem to solve consists in minimizing a functional in a closed convex set. The characterization of the solution leads to solve a time-dependent variational inequality. An implicit scheme is used for the discretization of the time-dependent part of the operator and so we have to solve a sequence of stationary elliptic problems. For the solution of each stationary problem, an equivalent form of a minimization problem is formulated as the solution of a multivalued equation, obtained by the perturbation of the previous stationary elliptic operator by a diagonal monotone maximal multivalued operator. The spatial discretization of such problem by appropriate scheme leads to the solution of large scale algebraic systems. According to the size of these systems, parallel iterative asynchronous and synchronous methods are carried out on distributed architectures; in the present study, methods without and with overlapping like Schwarz alternating methods are considered. The convergence of the parallel iterative algorithms is analysed by contraction approaches. Finally, the parallel experiments are presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-016-0224-6</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-1875-7020</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2017-08, Vol.75 (4), p.879-908 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01450772v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Algorithms Computer Science Constraint modelling Convexity Decomposition Discretization Distributed, Parallel, and Cluster Computing Fluid mechanics Iterative algorithms Iterative methods Mathematical analysis Mathematical models Mathematical problems Modeling and Simulation Numeric Computing Numerical Analysis Optimization Original Paper Partial differential equations Theory of Computation Time dependence |
title | Grid solution of problem with unilateral constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20solution%20of%20problem%20with%20unilateral%20constraints&rft.jtitle=Numerical%20algorithms&rft.au=Chau,%20M.&rft.date=2017-08-01&rft.volume=75&rft.issue=4&rft.spage=879&rft.epage=908&rft.pages=879-908&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-016-0224-6&rft_dat=%3Cproquest_hal_p%3E2918491102%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918491102&rft_id=info:pmid/&rfr_iscdi=true |