The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation

[Display omitted] •Boehmite nanoparticles with different size and shape were prepared.•Their phase transformation into γ-alumina was investigated.•Depending on the morphology, the transition temperatures range from 270 to 360°C.•The nature and amount of exposed surfaces explain such differences. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced powder technology : the international journal of the Society of Powder Technology, Japan Japan, 2016-07, Vol.27 (4), p.1814-1820
Hauptverfasser: Karouia, Fouad, Boualleg, Malika, Digne, Mathieu, Alphonse, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1820
container_issue 4
container_start_page 1814
container_title Advanced powder technology : the international journal of the Society of Powder Technology, Japan
container_volume 27
creator Karouia, Fouad
Boualleg, Malika
Digne, Mathieu
Alphonse, Pierre
description [Display omitted] •Boehmite nanoparticles with different size and shape were prepared.•Their phase transformation into γ-alumina was investigated.•Depending on the morphology, the transition temperatures range from 270 to 360°C.•The nature and amount of exposed surfaces explain such differences. The thermal activation of oxyhydroxides is a key industrial process in preparing oxide materials. When dealing with nanoparticles, the phase transition properties are drastically modified. By preparing size- and shape-controlled boehmite nanoparticles, we demonstrate that the transformation temperature into γ-alumina is significantly altered. Rhombus crystallites were obtained from boehmite precipitated at basic pH, whereas crystallites precipitated at pH 4.5 were hexagonal. For the same crystallite size (ca. 4.5nm), the transition temperature of the hexagonal crystallites was 315°C whereas that of the rhombus ones was only 270°C. A thermodynamic model was developed to rationalize these observations: the transition temperature results from a compromise between the crystallite size and the ratio of the lateral and basal surfaces. Consequently, the as-determined kinetic data could be a powerful tool for developing new efficient calcination processes and optimizing alumina properties.
doi_str_mv 10.1016/j.apt.2016.06.014
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01449838v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921883116301492</els_id><sourcerecordid>oai_HAL_hal_01449838v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-aec41a0cb99048610cb77c477eef224a53b61ba7f1f6a800c770ec2c127707063</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLe9eki7k6TZRE-lqBUKXup5mW4nZEuSDbtrsf56t1Y8eBAG5s0w34N5jN2CmICAYrqb4BAmaZQTEQvyMzaCWVEms1kqz9lIVCkkZZnBJbvyficEyDSvRuxj3RA33YA6cFvzHnur3cEHbFsTiHvzSRz7LfcNDsRtz4cGPfHgsPe1dR0GY_t7Ph-G1ujvgQfLQzTdWGq66DHF9r0zPf5hrtlFja2nm58-Zm9Pj-vFMlm9Pr8s5qtE5wAhQYodhd5UlcjLAqKSUudSEtVpmuMs2xSwQVlDXWAphJZSkE41pFFIUWRjdnfybbBVgzMduoOyaNRyvlLHXcwqr8qs3EO8hdOtdtZ7R_UvAEIdY1Y7FWNWx5iVKI5oZB5ODMUn9oac8tpQr2lrHOmgttb8Q38BDLCHaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Karouia, Fouad ; Boualleg, Malika ; Digne, Mathieu ; Alphonse, Pierre</creator><creatorcontrib>Karouia, Fouad ; Boualleg, Malika ; Digne, Mathieu ; Alphonse, Pierre</creatorcontrib><description>[Display omitted] •Boehmite nanoparticles with different size and shape were prepared.•Their phase transformation into γ-alumina was investigated.•Depending on the morphology, the transition temperatures range from 270 to 360°C.•The nature and amount of exposed surfaces explain such differences. The thermal activation of oxyhydroxides is a key industrial process in preparing oxide materials. When dealing with nanoparticles, the phase transition properties are drastically modified. By preparing size- and shape-controlled boehmite nanoparticles, we demonstrate that the transformation temperature into γ-alumina is significantly altered. Rhombus crystallites were obtained from boehmite precipitated at basic pH, whereas crystallites precipitated at pH 4.5 were hexagonal. For the same crystallite size (ca. 4.5nm), the transition temperature of the hexagonal crystallites was 315°C whereas that of the rhombus ones was only 270°C. A thermodynamic model was developed to rationalize these observations: the transition temperature results from a compromise between the crystallite size and the ratio of the lateral and basal surfaces. Consequently, the as-determined kinetic data could be a powerful tool for developing new efficient calcination processes and optimizing alumina properties.</description><identifier>ISSN: 0921-8831</identifier><identifier>EISSN: 1568-5527</identifier><identifier>DOI: 10.1016/j.apt.2016.06.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Alumina ; Boehmite ; Chemical Sciences ; Nanoparticles ; Phase transformation ; Thermal process</subject><ispartof>Advanced powder technology : the international journal of the Society of Powder Technology, Japan, 2016-07, Vol.27 (4), p.1814-1820</ispartof><rights>2016 The Society of Powder Technology Japan</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-aec41a0cb99048610cb77c477eef224a53b61ba7f1f6a800c770ec2c127707063</citedby><cites>FETCH-LOGICAL-c411t-aec41a0cb99048610cb77c477eef224a53b61ba7f1f6a800c770ec2c127707063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apt.2016.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27925,27926,45996</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01449838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Karouia, Fouad</creatorcontrib><creatorcontrib>Boualleg, Malika</creatorcontrib><creatorcontrib>Digne, Mathieu</creatorcontrib><creatorcontrib>Alphonse, Pierre</creatorcontrib><title>The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation</title><title>Advanced powder technology : the international journal of the Society of Powder Technology, Japan</title><description>[Display omitted] •Boehmite nanoparticles with different size and shape were prepared.•Their phase transformation into γ-alumina was investigated.•Depending on the morphology, the transition temperatures range from 270 to 360°C.•The nature and amount of exposed surfaces explain such differences. The thermal activation of oxyhydroxides is a key industrial process in preparing oxide materials. When dealing with nanoparticles, the phase transition properties are drastically modified. By preparing size- and shape-controlled boehmite nanoparticles, we demonstrate that the transformation temperature into γ-alumina is significantly altered. Rhombus crystallites were obtained from boehmite precipitated at basic pH, whereas crystallites precipitated at pH 4.5 were hexagonal. For the same crystallite size (ca. 4.5nm), the transition temperature of the hexagonal crystallites was 315°C whereas that of the rhombus ones was only 270°C. A thermodynamic model was developed to rationalize these observations: the transition temperature results from a compromise between the crystallite size and the ratio of the lateral and basal surfaces. Consequently, the as-determined kinetic data could be a powerful tool for developing new efficient calcination processes and optimizing alumina properties.</description><subject>Alumina</subject><subject>Boehmite</subject><subject>Chemical Sciences</subject><subject>Nanoparticles</subject><subject>Phase transformation</subject><subject>Thermal process</subject><issn>0921-8831</issn><issn>1568-5527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLe9eki7k6TZRE-lqBUKXup5mW4nZEuSDbtrsf56t1Y8eBAG5s0w34N5jN2CmICAYrqb4BAmaZQTEQvyMzaCWVEms1kqz9lIVCkkZZnBJbvyficEyDSvRuxj3RA33YA6cFvzHnur3cEHbFsTiHvzSRz7LfcNDsRtz4cGPfHgsPe1dR0GY_t7Ph-G1ujvgQfLQzTdWGq66DHF9r0zPf5hrtlFja2nm58-Zm9Pj-vFMlm9Pr8s5qtE5wAhQYodhd5UlcjLAqKSUudSEtVpmuMs2xSwQVlDXWAphJZSkE41pFFIUWRjdnfybbBVgzMduoOyaNRyvlLHXcwqr8qs3EO8hdOtdtZ7R_UvAEIdY1Y7FWNWx5iVKI5oZB5ODMUn9oac8tpQr2lrHOmgttb8Q38BDLCHaQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Karouia, Fouad</creator><creator>Boualleg, Malika</creator><creator>Digne, Mathieu</creator><creator>Alphonse, Pierre</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20160701</creationdate><title>The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation</title><author>Karouia, Fouad ; Boualleg, Malika ; Digne, Mathieu ; Alphonse, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-aec41a0cb99048610cb77c477eef224a53b61ba7f1f6a800c770ec2c127707063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alumina</topic><topic>Boehmite</topic><topic>Chemical Sciences</topic><topic>Nanoparticles</topic><topic>Phase transformation</topic><topic>Thermal process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karouia, Fouad</creatorcontrib><creatorcontrib>Boualleg, Malika</creatorcontrib><creatorcontrib>Digne, Mathieu</creatorcontrib><creatorcontrib>Alphonse, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced powder technology : the international journal of the Society of Powder Technology, Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karouia, Fouad</au><au>Boualleg, Malika</au><au>Digne, Mathieu</au><au>Alphonse, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation</atitle><jtitle>Advanced powder technology : the international journal of the Society of Powder Technology, Japan</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>27</volume><issue>4</issue><spage>1814</spage><epage>1820</epage><pages>1814-1820</pages><issn>0921-8831</issn><eissn>1568-5527</eissn><abstract>[Display omitted] •Boehmite nanoparticles with different size and shape were prepared.•Their phase transformation into γ-alumina was investigated.•Depending on the morphology, the transition temperatures range from 270 to 360°C.•The nature and amount of exposed surfaces explain such differences. The thermal activation of oxyhydroxides is a key industrial process in preparing oxide materials. When dealing with nanoparticles, the phase transition properties are drastically modified. By preparing size- and shape-controlled boehmite nanoparticles, we demonstrate that the transformation temperature into γ-alumina is significantly altered. Rhombus crystallites were obtained from boehmite precipitated at basic pH, whereas crystallites precipitated at pH 4.5 were hexagonal. For the same crystallite size (ca. 4.5nm), the transition temperature of the hexagonal crystallites was 315°C whereas that of the rhombus ones was only 270°C. A thermodynamic model was developed to rationalize these observations: the transition temperature results from a compromise between the crystallite size and the ratio of the lateral and basal surfaces. Consequently, the as-determined kinetic data could be a powerful tool for developing new efficient calcination processes and optimizing alumina properties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apt.2016.06.014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-8831
ispartof Advanced powder technology : the international journal of the Society of Powder Technology, Japan, 2016-07, Vol.27 (4), p.1814-1820
issn 0921-8831
1568-5527
language eng
recordid cdi_hal_primary_oai_HAL_hal_01449838v1
source Access via ScienceDirect (Elsevier)
subjects Alumina
Boehmite
Chemical Sciences
Nanoparticles
Phase transformation
Thermal process
title The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20nanocrystallite%20size%20and%20shape%20on%20phase%20transformation:%20Application%20to%20the%20boehmite/alumina%20transformation&rft.jtitle=Advanced%20powder%20technology%20:%20the%20international%20journal%20of%20the%20Society%20of%20Powder%20Technology,%20Japan&rft.au=Karouia,%20Fouad&rft.date=2016-07-01&rft.volume=27&rft.issue=4&rft.spage=1814&rft.epage=1820&rft.pages=1814-1820&rft.issn=0921-8831&rft.eissn=1568-5527&rft_id=info:doi/10.1016/j.apt.2016.06.014&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01449838v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921883116301492&rfr_iscdi=true