Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1

Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2017-01, Vol.27 (2), p.250-256
Hauptverfasser: Ribeiro, Carolina Werner, Baldacci-Cresp, Fabien, Pierre, Olivier, Larousse, Marie, Benyamina, Sofiane, Lambert, Annie, Hopkins, Julie, Castella, Claude, Cazareth, Julie, Alloing, Geneviève, Boncompagni, Eric, Couturier, Jérémy, Mergaert, Peter, Gamas, Pascal, Rouhier, Nicolas, Montrichard, Françoise, Frendo, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 2
container_start_page 250
container_title Current biology
container_volume 27
creator Ribeiro, Carolina Werner
Baldacci-Cresp, Fabien
Pierre, Olivier
Larousse, Marie
Benyamina, Sofiane
Lambert, Annie
Hopkins, Julie
Castella, Claude
Cazareth, Julie
Alloing, Geneviève
Boncompagni, Eric
Couturier, Jérémy
Mergaert, Peter
Gamas, Pascal
Rouhier, Nicolas
Montrichard, Françoise
Frendo, Pierre
description Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions. [Display omitted] •The plant thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids•Trx s1 is necessary for bacteroid differentiation•Trx s1 controls the redox state of nodule-specific cysteine-rich peptides (NCRs)•Trx s1 regulates the cytotoxic activity of NCR335 in Sinorhizobium meliloti Ribeiro et al. demonstrate that M. truncatula thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids, controls their differentiation, and regulates NCR activity. Their results, together with Trx activation of antimicrobial peptides in humans, suggest a conserved activation mechanism of host peptides in symbiotic and pathogenic interactions.
doi_str_mv 10.1016/j.cub.2016.11.013
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01439293v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982216313380</els_id><sourcerecordid>1853352118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4113-e0729247d89059b47f0446e882d6ef4f332b320774399ebaffae61b4c649666d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhAdigLGGR4Gt7HFusSqEUafgRKmvLca6nHmXi1k4q5u1xNGWWrGwdfef4Xh9CXgNtgIJ8v2vc3DWsXBuAhgJ_QlagWl1TIdZPyYpqSWutGDsjL3LeUQpMafmcnDFFoZUAKzL8wu082CnEsYq--hS8x4TjFE7S9zCluMWxvgp_writPlo3YQq26g7Vt-BSzId9V9ipurFpi9PCFNvPwS7SbYgJ-1icVYaX5Jm3Q8ZXj-c5-X31-ebyut78-PL18mJTOwHAa6Qt00y0vdJ0rTvR-rKPRKVYL9ELzznrOKNtK7jW2FnvLUrohJNCSyl7fk7eHXNv7WDuUtjbdDDRBnN9sTGLRqFYmeYPUNi3R_YuxfsZ82T2ITscyvgY52xArTlfMwBVUDiiy9I5oT9lAzVLIWZnSiFmKcQAlFd48bx5jJ-7PfYnx78GCvDhCGD5kIeAyWQXcHTYh4RuMn0M_4n_C4gFmmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853352118</pqid></control><display><type>article</type><title>Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ribeiro, Carolina Werner ; Baldacci-Cresp, Fabien ; Pierre, Olivier ; Larousse, Marie ; Benyamina, Sofiane ; Lambert, Annie ; Hopkins, Julie ; Castella, Claude ; Cazareth, Julie ; Alloing, Geneviève ; Boncompagni, Eric ; Couturier, Jérémy ; Mergaert, Peter ; Gamas, Pascal ; Rouhier, Nicolas ; Montrichard, Françoise ; Frendo, Pierre</creator><creatorcontrib>Ribeiro, Carolina Werner ; Baldacci-Cresp, Fabien ; Pierre, Olivier ; Larousse, Marie ; Benyamina, Sofiane ; Lambert, Annie ; Hopkins, Julie ; Castella, Claude ; Cazareth, Julie ; Alloing, Geneviève ; Boncompagni, Eric ; Couturier, Jérémy ; Mergaert, Peter ; Gamas, Pascal ; Rouhier, Nicolas ; Montrichard, Françoise ; Frendo, Pierre</creatorcontrib><description>Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions. [Display omitted] •The plant thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids•Trx s1 is necessary for bacteroid differentiation•Trx s1 controls the redox state of nodule-specific cysteine-rich peptides (NCRs)•Trx s1 regulates the cytotoxic activity of NCR335 in Sinorhizobium meliloti Ribeiro et al. demonstrate that M. truncatula thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids, controls their differentiation, and regulates NCR activity. Their results, together with Trx activation of antimicrobial peptides in humans, suggest a conserved activation mechanism of host peptides in symbiotic and pathogenic interactions.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2016.11.013</identifier><identifier>PMID: 28017611</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>bacteroids ; Cysteine - chemistry ; Cysteine - genetics ; Cysteine - metabolism ; differentiation ; disulfide bond reduction ; Gene Expression Regulation, Plant ; Life Sciences ; Medicago truncatula ; Medicago truncatula - growth &amp; development ; Medicago truncatula - microbiology ; Nitrogen-Fixing Bacteria - drug effects ; Nitrogen-Fixing Bacteria - growth &amp; development ; nitrogen-fixing symbiosis ; nodule cysteine-rich peptides ; Peptide Fragments - metabolism ; redox state ; Root Nodules, Plant - growth &amp; development ; Root Nodules, Plant - microbiology ; Signal Transduction ; Sinorhizobium meliloti ; Sinorhizobium meliloti - drug effects ; Sinorhizobium meliloti - growth &amp; development ; Symbiosis ; thiol modifications ; thioredoxins ; Thioredoxins - antagonists &amp; inhibitors</subject><ispartof>Current biology, 2017-01, Vol.27 (2), p.250-256</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4113-e0729247d89059b47f0446e882d6ef4f332b320774399ebaffae61b4c649666d3</citedby><cites>FETCH-LOGICAL-c4113-e0729247d89059b47f0446e882d6ef4f332b320774399ebaffae61b4c649666d3</cites><orcidid>0000-0002-2036-7884 ; 0000-0003-3127-2669 ; 0009-0002-8050-8666 ; 0000-0002-8482-209X ; 0000-0002-5919-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982216313380$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28017611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01439293$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro, Carolina Werner</creatorcontrib><creatorcontrib>Baldacci-Cresp, Fabien</creatorcontrib><creatorcontrib>Pierre, Olivier</creatorcontrib><creatorcontrib>Larousse, Marie</creatorcontrib><creatorcontrib>Benyamina, Sofiane</creatorcontrib><creatorcontrib>Lambert, Annie</creatorcontrib><creatorcontrib>Hopkins, Julie</creatorcontrib><creatorcontrib>Castella, Claude</creatorcontrib><creatorcontrib>Cazareth, Julie</creatorcontrib><creatorcontrib>Alloing, Geneviève</creatorcontrib><creatorcontrib>Boncompagni, Eric</creatorcontrib><creatorcontrib>Couturier, Jérémy</creatorcontrib><creatorcontrib>Mergaert, Peter</creatorcontrib><creatorcontrib>Gamas, Pascal</creatorcontrib><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Montrichard, Françoise</creatorcontrib><creatorcontrib>Frendo, Pierre</creatorcontrib><title>Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions. [Display omitted] •The plant thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids•Trx s1 is necessary for bacteroid differentiation•Trx s1 controls the redox state of nodule-specific cysteine-rich peptides (NCRs)•Trx s1 regulates the cytotoxic activity of NCR335 in Sinorhizobium meliloti Ribeiro et al. demonstrate that M. truncatula thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids, controls their differentiation, and regulates NCR activity. Their results, together with Trx activation of antimicrobial peptides in humans, suggest a conserved activation mechanism of host peptides in symbiotic and pathogenic interactions.</description><subject>bacteroids</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>differentiation</subject><subject>disulfide bond reduction</subject><subject>Gene Expression Regulation, Plant</subject><subject>Life Sciences</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - growth &amp; development</subject><subject>Medicago truncatula - microbiology</subject><subject>Nitrogen-Fixing Bacteria - drug effects</subject><subject>Nitrogen-Fixing Bacteria - growth &amp; development</subject><subject>nitrogen-fixing symbiosis</subject><subject>nodule cysteine-rich peptides</subject><subject>Peptide Fragments - metabolism</subject><subject>redox state</subject><subject>Root Nodules, Plant - growth &amp; development</subject><subject>Root Nodules, Plant - microbiology</subject><subject>Signal Transduction</subject><subject>Sinorhizobium meliloti</subject><subject>Sinorhizobium meliloti - drug effects</subject><subject>Sinorhizobium meliloti - growth &amp; development</subject><subject>Symbiosis</subject><subject>thiol modifications</subject><subject>thioredoxins</subject><subject>Thioredoxins - antagonists &amp; inhibitors</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhAdigLGGR4Gt7HFusSqEUafgRKmvLca6nHmXi1k4q5u1xNGWWrGwdfef4Xh9CXgNtgIJ8v2vc3DWsXBuAhgJ_QlagWl1TIdZPyYpqSWutGDsjL3LeUQpMafmcnDFFoZUAKzL8wu082CnEsYq--hS8x4TjFE7S9zCluMWxvgp_writPlo3YQq26g7Vt-BSzId9V9ipurFpi9PCFNvPwS7SbYgJ-1icVYaX5Jm3Q8ZXj-c5-X31-ebyut78-PL18mJTOwHAa6Qt00y0vdJ0rTvR-rKPRKVYL9ELzznrOKNtK7jW2FnvLUrohJNCSyl7fk7eHXNv7WDuUtjbdDDRBnN9sTGLRqFYmeYPUNi3R_YuxfsZ82T2ITscyvgY52xArTlfMwBVUDiiy9I5oT9lAzVLIWZnSiFmKcQAlFd48bx5jJ-7PfYnx78GCvDhCGD5kIeAyWQXcHTYh4RuMn0M_4n_C4gFmmg</recordid><startdate>20170123</startdate><enddate>20170123</enddate><creator>Ribeiro, Carolina Werner</creator><creator>Baldacci-Cresp, Fabien</creator><creator>Pierre, Olivier</creator><creator>Larousse, Marie</creator><creator>Benyamina, Sofiane</creator><creator>Lambert, Annie</creator><creator>Hopkins, Julie</creator><creator>Castella, Claude</creator><creator>Cazareth, Julie</creator><creator>Alloing, Geneviève</creator><creator>Boncompagni, Eric</creator><creator>Couturier, Jérémy</creator><creator>Mergaert, Peter</creator><creator>Gamas, Pascal</creator><creator>Rouhier, Nicolas</creator><creator>Montrichard, Françoise</creator><creator>Frendo, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0003-3127-2669</orcidid><orcidid>https://orcid.org/0009-0002-8050-8666</orcidid><orcidid>https://orcid.org/0000-0002-8482-209X</orcidid><orcidid>https://orcid.org/0000-0002-5919-7317</orcidid></search><sort><creationdate>20170123</creationdate><title>Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1</title><author>Ribeiro, Carolina Werner ; Baldacci-Cresp, Fabien ; Pierre, Olivier ; Larousse, Marie ; Benyamina, Sofiane ; Lambert, Annie ; Hopkins, Julie ; Castella, Claude ; Cazareth, Julie ; Alloing, Geneviève ; Boncompagni, Eric ; Couturier, Jérémy ; Mergaert, Peter ; Gamas, Pascal ; Rouhier, Nicolas ; Montrichard, Françoise ; Frendo, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4113-e0729247d89059b47f0446e882d6ef4f332b320774399ebaffae61b4c649666d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bacteroids</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>differentiation</topic><topic>disulfide bond reduction</topic><topic>Gene Expression Regulation, Plant</topic><topic>Life Sciences</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - growth &amp; development</topic><topic>Medicago truncatula - microbiology</topic><topic>Nitrogen-Fixing Bacteria - drug effects</topic><topic>Nitrogen-Fixing Bacteria - growth &amp; development</topic><topic>nitrogen-fixing symbiosis</topic><topic>nodule cysteine-rich peptides</topic><topic>Peptide Fragments - metabolism</topic><topic>redox state</topic><topic>Root Nodules, Plant - growth &amp; development</topic><topic>Root Nodules, Plant - microbiology</topic><topic>Signal Transduction</topic><topic>Sinorhizobium meliloti</topic><topic>Sinorhizobium meliloti - drug effects</topic><topic>Sinorhizobium meliloti - growth &amp; development</topic><topic>Symbiosis</topic><topic>thiol modifications</topic><topic>thioredoxins</topic><topic>Thioredoxins - antagonists &amp; inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Carolina Werner</creatorcontrib><creatorcontrib>Baldacci-Cresp, Fabien</creatorcontrib><creatorcontrib>Pierre, Olivier</creatorcontrib><creatorcontrib>Larousse, Marie</creatorcontrib><creatorcontrib>Benyamina, Sofiane</creatorcontrib><creatorcontrib>Lambert, Annie</creatorcontrib><creatorcontrib>Hopkins, Julie</creatorcontrib><creatorcontrib>Castella, Claude</creatorcontrib><creatorcontrib>Cazareth, Julie</creatorcontrib><creatorcontrib>Alloing, Geneviève</creatorcontrib><creatorcontrib>Boncompagni, Eric</creatorcontrib><creatorcontrib>Couturier, Jérémy</creatorcontrib><creatorcontrib>Mergaert, Peter</creatorcontrib><creatorcontrib>Gamas, Pascal</creatorcontrib><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Montrichard, Françoise</creatorcontrib><creatorcontrib>Frendo, Pierre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, Carolina Werner</au><au>Baldacci-Cresp, Fabien</au><au>Pierre, Olivier</au><au>Larousse, Marie</au><au>Benyamina, Sofiane</au><au>Lambert, Annie</au><au>Hopkins, Julie</au><au>Castella, Claude</au><au>Cazareth, Julie</au><au>Alloing, Geneviève</au><au>Boncompagni, Eric</au><au>Couturier, Jérémy</au><au>Mergaert, Peter</au><au>Gamas, Pascal</au><au>Rouhier, Nicolas</au><au>Montrichard, Françoise</au><au>Frendo, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2017-01-23</date><risdate>2017</risdate><volume>27</volume><issue>2</issue><spage>250</spage><epage>256</epage><pages>250-256</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions. [Display omitted] •The plant thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids•Trx s1 is necessary for bacteroid differentiation•Trx s1 controls the redox state of nodule-specific cysteine-rich peptides (NCRs)•Trx s1 regulates the cytotoxic activity of NCR335 in Sinorhizobium meliloti Ribeiro et al. demonstrate that M. truncatula thioredoxin Trx s1 is targeted to nitrogen-fixing bacteroids, controls their differentiation, and regulates NCR activity. Their results, together with Trx activation of antimicrobial peptides in humans, suggest a conserved activation mechanism of host peptides in symbiotic and pathogenic interactions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28017611</pmid><doi>10.1016/j.cub.2016.11.013</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0003-3127-2669</orcidid><orcidid>https://orcid.org/0009-0002-8050-8666</orcidid><orcidid>https://orcid.org/0000-0002-8482-209X</orcidid><orcidid>https://orcid.org/0000-0002-5919-7317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2017-01, Vol.27 (2), p.250-256
issn 0960-9822
1879-0445
language eng
recordid cdi_hal_primary_oai_HAL_hal_01439293v1
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects bacteroids
Cysteine - chemistry
Cysteine - genetics
Cysteine - metabolism
differentiation
disulfide bond reduction
Gene Expression Regulation, Plant
Life Sciences
Medicago truncatula
Medicago truncatula - growth & development
Medicago truncatula - microbiology
Nitrogen-Fixing Bacteria - drug effects
Nitrogen-Fixing Bacteria - growth & development
nitrogen-fixing symbiosis
nodule cysteine-rich peptides
Peptide Fragments - metabolism
redox state
Root Nodules, Plant - growth & development
Root Nodules, Plant - microbiology
Signal Transduction
Sinorhizobium meliloti
Sinorhizobium meliloti - drug effects
Sinorhizobium meliloti - growth & development
Symbiosis
thiol modifications
thioredoxins
Thioredoxins - antagonists & inhibitors
title Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Differentiation%20of%20Nitrogen-Fixing%20Bacteria%20by%20Microsymbiont%20Targeting%20of%20Plant%20Thioredoxin%20s1&rft.jtitle=Current%20biology&rft.au=Ribeiro,%20Carolina%20Werner&rft.date=2017-01-23&rft.volume=27&rft.issue=2&rft.spage=250&rft.epage=256&rft.pages=250-256&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2016.11.013&rft_dat=%3Cproquest_hal_p%3E1853352118%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1853352118&rft_id=info:pmid/28017611&rft_els_id=S0960982216313380&rfr_iscdi=true