Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm

[Display omitted] In vivo fate of nanomaterials is influenced by the particle size among other parameters. Thus, Health Agencies have identified the size of nanomaterial as an essential physicochemical property to characterize. This parameter can be explored by dynamic light scattering (DLS) that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2016-12, Vol.515 (1-2), p.245-253
Hauptverfasser: Varenne, F., Botton, J., Merlet, C., Hillaireau, H., Legrand, F.-X., Barratt, G., Vauthier, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1-2
container_start_page 245
container_title International journal of pharmaceutics
container_volume 515
creator Varenne, F.
Botton, J.
Merlet, C.
Hillaireau, H.
Legrand, F.-X.
Barratt, G.
Vauthier, C.
description [Display omitted] In vivo fate of nanomaterials is influenced by the particle size among other parameters. Thus, Health Agencies have identified the size of nanomaterial as an essential physicochemical property to characterize. This parameter can be explored by dynamic light scattering (DLS) that is described in the ISO standard 22412:2008(E) and is one of the methods recognized by Health Agencies. However, no protocol of DLS size measurement has been validated over a large range of size so far. In this work, we propose an extension of validation of a protocol of size measurement by DLS previously validated with certified reference materials (CRM) at 60 and 203nm. The present work reports robustness, precision and trueness of this protocol that were investigated using CRM at 100 and 400nm. The protocol was robust, accurate and consistent with the ISO standard over the whole range of size that were considered. Expanded uncertainties were 4.4 and 3.6% for CRM at 100 and 400nm respectively indicating the reliability of the protocol. The range of application of the protocol previously applied to the size measurement of liposomes and polymer nanoparticles was extended to inorganic nanomaterial including silica nanoparticles.
doi_str_mv 10.1016/j.ijpharm.2016.10.016
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01437495v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517316309504</els_id><sourcerecordid>1835393332</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1469-e59286119096de8fe9d877551ff81231266efd39bd2e086ab9d0db3a03fb49b33</originalsourceid><addsrcrecordid>eNpdks2O0zAUhS0EYjoDjwDyEhYp_knsmA0ajWAGqRJIwNpy4pupq9gudtKhPBjPh0MLC1ZH9-jzubryQegFJWtKqHizW7vdfmuSX7MyFm9d5BFa0VbyitdSPEYrwmVbNVTyC3SZ844QIhjlT9EFk5I1TKgV-vXF_QQcB-xjiNblPaQMFgcTojcTJGfGjOFgxrlMFndHbI_BeNfj0d1vJ5x7My1YuH-LP6c4xT6OuODO_uGHmLAHk-cEHsKUl02CYBMsZoQHj60zHkrAfxtdxiE-YPgxQbAlZ4qYktO7mpDgn6EnQ-Hg-Vmv0LcP77_e3FWbT7cfb643FdBaqAoaxVpBqSJKWGgHULaVsmnoMLSUccqEgMFy1VkGpBWmU5bYjhvCh65WHedX6PUpd2tGvU_Om3TU0Th9d73Ri0dozWWtmgMt7KsTu0_x-wx50t7lHsbRBIhz1rTlDVecc1bQl2d07jzYf8l__6UA704AlOMODpLOvYPQg3UJ-knb6DQlemmC3ulzE_TShMUuwn8D1p2okw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835393332</pqid></control><display><type>article</type><title>Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Varenne, F. ; Botton, J. ; Merlet, C. ; Hillaireau, H. ; Legrand, F.-X. ; Barratt, G. ; Vauthier, C.</creator><creatorcontrib>Varenne, F. ; Botton, J. ; Merlet, C. ; Hillaireau, H. ; Legrand, F.-X. ; Barratt, G. ; Vauthier, C.</creatorcontrib><description>[Display omitted] In vivo fate of nanomaterials is influenced by the particle size among other parameters. Thus, Health Agencies have identified the size of nanomaterial as an essential physicochemical property to characterize. This parameter can be explored by dynamic light scattering (DLS) that is described in the ISO standard 22412:2008(E) and is one of the methods recognized by Health Agencies. However, no protocol of DLS size measurement has been validated over a large range of size so far. In this work, we propose an extension of validation of a protocol of size measurement by DLS previously validated with certified reference materials (CRM) at 60 and 203nm. The present work reports robustness, precision and trueness of this protocol that were investigated using CRM at 100 and 400nm. The protocol was robust, accurate and consistent with the ISO standard over the whole range of size that were considered. Expanded uncertainties were 4.4 and 3.6% for CRM at 100 and 400nm respectively indicating the reliability of the protocol. The range of application of the protocol previously applied to the size measurement of liposomes and polymer nanoparticles was extended to inorganic nanomaterial including silica nanoparticles.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2016.10.016</identifier><identifier>PMID: 27725269</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analysis of variance ; Analytical chemistry ; Chemical Sciences ; Dynamic light scattering ; Dynamic Light Scattering - methods ; Galenic pharmacology ; Life Sciences ; Nanomaterials ; Nanoparticles - chemistry ; Nanostructures - chemistry ; Particle Size ; Pharmaceutical sciences ; Polymers ; Range of size ; Standardized protocol ; Validation</subject><ispartof>International journal of pharmaceutics, 2016-12, Vol.515 (1-2), p.245-253</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0153-910X ; 0000-0002-4814-6370 ; 0000-0002-7271-7284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517316309504$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27725269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01437495$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Varenne, F.</creatorcontrib><creatorcontrib>Botton, J.</creatorcontrib><creatorcontrib>Merlet, C.</creatorcontrib><creatorcontrib>Hillaireau, H.</creatorcontrib><creatorcontrib>Legrand, F.-X.</creatorcontrib><creatorcontrib>Barratt, G.</creatorcontrib><creatorcontrib>Vauthier, C.</creatorcontrib><title>Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] In vivo fate of nanomaterials is influenced by the particle size among other parameters. Thus, Health Agencies have identified the size of nanomaterial as an essential physicochemical property to characterize. This parameter can be explored by dynamic light scattering (DLS) that is described in the ISO standard 22412:2008(E) and is one of the methods recognized by Health Agencies. However, no protocol of DLS size measurement has been validated over a large range of size so far. In this work, we propose an extension of validation of a protocol of size measurement by DLS previously validated with certified reference materials (CRM) at 60 and 203nm. The present work reports robustness, precision and trueness of this protocol that were investigated using CRM at 100 and 400nm. The protocol was robust, accurate and consistent with the ISO standard over the whole range of size that were considered. Expanded uncertainties were 4.4 and 3.6% for CRM at 100 and 400nm respectively indicating the reliability of the protocol. The range of application of the protocol previously applied to the size measurement of liposomes and polymer nanoparticles was extended to inorganic nanomaterial including silica nanoparticles.</description><subject>Analysis of variance</subject><subject>Analytical chemistry</subject><subject>Chemical Sciences</subject><subject>Dynamic light scattering</subject><subject>Dynamic Light Scattering - methods</subject><subject>Galenic pharmacology</subject><subject>Life Sciences</subject><subject>Nanomaterials</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Pharmaceutical sciences</subject><subject>Polymers</subject><subject>Range of size</subject><subject>Standardized protocol</subject><subject>Validation</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks2O0zAUhS0EYjoDjwDyEhYp_knsmA0ajWAGqRJIwNpy4pupq9gudtKhPBjPh0MLC1ZH9-jzubryQegFJWtKqHizW7vdfmuSX7MyFm9d5BFa0VbyitdSPEYrwmVbNVTyC3SZ844QIhjlT9EFk5I1TKgV-vXF_QQcB-xjiNblPaQMFgcTojcTJGfGjOFgxrlMFndHbI_BeNfj0d1vJ5x7My1YuH-LP6c4xT6OuODO_uGHmLAHk-cEHsKUl02CYBMsZoQHj60zHkrAfxtdxiE-YPgxQbAlZ4qYktO7mpDgn6EnQ-Hg-Vmv0LcP77_e3FWbT7cfb643FdBaqAoaxVpBqSJKWGgHULaVsmnoMLSUccqEgMFy1VkGpBWmU5bYjhvCh65WHedX6PUpd2tGvU_Om3TU0Th9d73Ri0dozWWtmgMt7KsTu0_x-wx50t7lHsbRBIhz1rTlDVecc1bQl2d07jzYf8l__6UA704AlOMODpLOvYPQg3UJ-knb6DQlemmC3ulzE_TShMUuwn8D1p2okw</recordid><startdate>20161230</startdate><enddate>20161230</enddate><creator>Varenne, F.</creator><creator>Botton, J.</creator><creator>Merlet, C.</creator><creator>Hillaireau, H.</creator><creator>Legrand, F.-X.</creator><creator>Barratt, G.</creator><creator>Vauthier, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0153-910X</orcidid><orcidid>https://orcid.org/0000-0002-4814-6370</orcidid><orcidid>https://orcid.org/0000-0002-7271-7284</orcidid></search><sort><creationdate>20161230</creationdate><title>Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm</title><author>Varenne, F. ; Botton, J. ; Merlet, C. ; Hillaireau, H. ; Legrand, F.-X. ; Barratt, G. ; Vauthier, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1469-e59286119096de8fe9d877551ff81231266efd39bd2e086ab9d0db3a03fb49b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis of variance</topic><topic>Analytical chemistry</topic><topic>Chemical Sciences</topic><topic>Dynamic light scattering</topic><topic>Dynamic Light Scattering - methods</topic><topic>Galenic pharmacology</topic><topic>Life Sciences</topic><topic>Nanomaterials</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Pharmaceutical sciences</topic><topic>Polymers</topic><topic>Range of size</topic><topic>Standardized protocol</topic><topic>Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varenne, F.</creatorcontrib><creatorcontrib>Botton, J.</creatorcontrib><creatorcontrib>Merlet, C.</creatorcontrib><creatorcontrib>Hillaireau, H.</creatorcontrib><creatorcontrib>Legrand, F.-X.</creatorcontrib><creatorcontrib>Barratt, G.</creatorcontrib><creatorcontrib>Vauthier, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varenne, F.</au><au>Botton, J.</au><au>Merlet, C.</au><au>Hillaireau, H.</au><au>Legrand, F.-X.</au><au>Barratt, G.</au><au>Vauthier, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2016-12-30</date><risdate>2016</risdate><volume>515</volume><issue>1-2</issue><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] In vivo fate of nanomaterials is influenced by the particle size among other parameters. Thus, Health Agencies have identified the size of nanomaterial as an essential physicochemical property to characterize. This parameter can be explored by dynamic light scattering (DLS) that is described in the ISO standard 22412:2008(E) and is one of the methods recognized by Health Agencies. However, no protocol of DLS size measurement has been validated over a large range of size so far. In this work, we propose an extension of validation of a protocol of size measurement by DLS previously validated with certified reference materials (CRM) at 60 and 203nm. The present work reports robustness, precision and trueness of this protocol that were investigated using CRM at 100 and 400nm. The protocol was robust, accurate and consistent with the ISO standard over the whole range of size that were considered. Expanded uncertainties were 4.4 and 3.6% for CRM at 100 and 400nm respectively indicating the reliability of the protocol. The range of application of the protocol previously applied to the size measurement of liposomes and polymer nanoparticles was extended to inorganic nanomaterial including silica nanoparticles.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27725269</pmid><doi>10.1016/j.ijpharm.2016.10.016</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0153-910X</orcidid><orcidid>https://orcid.org/0000-0002-4814-6370</orcidid><orcidid>https://orcid.org/0000-0002-7271-7284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2016-12, Vol.515 (1-2), p.245-253
issn 0378-5173
1873-3476
language eng
recordid cdi_hal_primary_oai_HAL_hal_01437495v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analysis of variance
Analytical chemistry
Chemical Sciences
Dynamic light scattering
Dynamic Light Scattering - methods
Galenic pharmacology
Life Sciences
Nanomaterials
Nanoparticles - chemistry
Nanostructures - chemistry
Particle Size
Pharmaceutical sciences
Polymers
Range of size
Standardized protocol
Validation
title Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20of%20monodispersed%20nanomaterials%20evaluated%20by%20dynamic%20light%20scattering:%20Protocol%20validated%20for%20measurements%20of%2060%20and%20203nm%20diameter%20nanomaterials%20is%20now%20extended%20to%20100%20and%20400nm&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Varenne,%20F.&rft.date=2016-12-30&rft.volume=515&rft.issue=1-2&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2016.10.016&rft_dat=%3Cproquest_hal_p%3E1835393332%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835393332&rft_id=info:pmid/27725269&rft_els_id=S0378517316309504&rfr_iscdi=true