Local and tissue-scale forces drive oriented junction growth during tissue extension

Convergence–extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior–posterior neighbours followed by growth of new junctions between dorsal–ventral neighbours. Much is k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2015-10, Vol.17 (10), p.1247-1258
Hauptverfasser: Collinet, Claudio, Rauzi, Matteo, Lenne, Pierre-François, Lecuit, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 10
container_start_page 1247
container_title Nature cell biology
container_volume 17
creator Collinet, Claudio
Rauzi, Matteo
Lenne, Pierre-François
Lecuit, Thomas
description Convergence–extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior–posterior neighbours followed by growth of new junctions between dorsal–ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence–extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell–cell displacement. Lecuit and colleagues use live imaging and laser ablation approaches to show that germ-band extension of the Drosophila embryo is associated with new junction growth, which is dependent on both tissue-level and local forces.
doi_str_mv 10.1038/ncb3226
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01428973v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431082951</galeid><sourcerecordid>A431082951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-c9d3e2f401447146aedeee120e3fbe03ce279c7a7b32b847733ec32df2e633193</originalsourceid><addsrcrecordid>eNptkt9vFCEQx4mxsbUa_wOziQ_ah60Lw8Hu46VR2-SSJm19JhzMXrnswQls1f9eNne2XmN4AIbPfOcHQ8g72pzTBtrP3iyBMfGCnFAuRc2F7F5OZzGrJXTsmLxOad00lPNGviLHTEDbCcFPyN0iGD1U2tsqu5RGrFO5Y9WHaDBVNroHrEJ06DPaaj16k13w1SqGn_m-smN0frX3rPBXRp_K8xty1Osh4dv9fkq-f_1yd3FZL66_XV3MF7WZcZlr01lA1vMpLVly1WgRkbIGoV9iAwaZ7IzUstS2bLmUAGiA2Z6hAKAdnJKzne69HtQ2uo2Ov1XQTl3OF2qyFWXWdhIeaGE_7dhtDD9GTFltXDI4DNpjGJOikrYAIIAV9MMzdB3G6EslhRKCltgz_kStSr-U833IUZtJVM050KZl3WwKe_4fqiyLG2eCx94V-4HD2YFDYXJp7EqPKamr25tD9uOONTGkFLF_bAJt1DQXaj8XhXy_L2lcbtA-cn8H4ak9aTt9KcZ_an6m9QeI6byO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766133154</pqid></control><display><type>article</type><title>Local and tissue-scale forces drive oriented junction growth during tissue extension</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Collinet, Claudio ; Rauzi, Matteo ; Lenne, Pierre-François ; Lecuit, Thomas</creator><creatorcontrib>Collinet, Claudio ; Rauzi, Matteo ; Lenne, Pierre-François ; Lecuit, Thomas</creatorcontrib><description>Convergence–extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior–posterior neighbours followed by growth of new junctions between dorsal–ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence–extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell–cell displacement. Lecuit and colleagues use live imaging and laser ablation approaches to show that germ-band extension of the Drosophila embryo is associated with new junction growth, which is dependent on both tissue-level and local forces.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3226</identifier><identifier>PMID: 26389664</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/19 ; 631/136/1660 ; 631/136/334/1582/715 ; 631/80/79/2028 ; 64/24 ; Animals ; Animals, Genetically Modified ; Body Patterning - genetics ; Cadherins - genetics ; Cadherins - metabolism ; Cancer Research ; Cell Adhesion - genetics ; Cell Biology ; Cell development (Biology) ; Cell Tracking - methods ; Cellular Biology ; Developmental Biology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; Fluid flow ; Fluorescence Recovery After Photobleaching ; Gene Expression Regulation, Developmental ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Intercellular Junctions - metabolism ; Life Sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Methods ; Microscopy, Confocal ; Observations ; Red Fluorescent Protein ; RNA Interference ; Stem Cells ; Time-Lapse Imaging ; Tissue engineering ; Tissues</subject><ispartof>Nature cell biology, 2015-10, Vol.17 (10), p.1247-1258</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-c9d3e2f401447146aedeee120e3fbe03ce279c7a7b32b847733ec32df2e633193</citedby><cites>FETCH-LOGICAL-c547t-c9d3e2f401447146aedeee120e3fbe03ce279c7a7b32b847733ec32df2e633193</cites><orcidid>0000-0002-6313-0668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3226$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3226$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26389664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01428973$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collinet, Claudio</creatorcontrib><creatorcontrib>Rauzi, Matteo</creatorcontrib><creatorcontrib>Lenne, Pierre-François</creatorcontrib><creatorcontrib>Lecuit, Thomas</creatorcontrib><title>Local and tissue-scale forces drive oriented junction growth during tissue extension</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Convergence–extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior–posterior neighbours followed by growth of new junctions between dorsal–ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence–extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell–cell displacement. Lecuit and colleagues use live imaging and laser ablation approaches to show that germ-band extension of the Drosophila embryo is associated with new junction growth, which is dependent on both tissue-level and local forces.</description><subject>14</subject><subject>14/19</subject><subject>631/136/1660</subject><subject>631/136/334/1582/715</subject><subject>631/80/79/2028</subject><subject>64/24</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Body Patterning - genetics</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cancer Research</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Biology</subject><subject>Cell development (Biology)</subject><subject>Cell Tracking - methods</subject><subject>Cellular Biology</subject><subject>Developmental Biology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Fluid flow</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Intercellular Junctions - metabolism</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Methods</subject><subject>Microscopy, Confocal</subject><subject>Observations</subject><subject>Red Fluorescent Protein</subject><subject>RNA Interference</subject><subject>Stem Cells</subject><subject>Time-Lapse Imaging</subject><subject>Tissue engineering</subject><subject>Tissues</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkt9vFCEQx4mxsbUa_wOziQ_ah60Lw8Hu46VR2-SSJm19JhzMXrnswQls1f9eNne2XmN4AIbPfOcHQ8g72pzTBtrP3iyBMfGCnFAuRc2F7F5OZzGrJXTsmLxOad00lPNGviLHTEDbCcFPyN0iGD1U2tsqu5RGrFO5Y9WHaDBVNroHrEJ06DPaaj16k13w1SqGn_m-smN0frX3rPBXRp_K8xty1Osh4dv9fkq-f_1yd3FZL66_XV3MF7WZcZlr01lA1vMpLVly1WgRkbIGoV9iAwaZ7IzUstS2bLmUAGiA2Z6hAKAdnJKzne69HtQ2uo2Ov1XQTl3OF2qyFWXWdhIeaGE_7dhtDD9GTFltXDI4DNpjGJOikrYAIIAV9MMzdB3G6EslhRKCltgz_kStSr-U833IUZtJVM050KZl3WwKe_4fqiyLG2eCx94V-4HD2YFDYXJp7EqPKamr25tD9uOONTGkFLF_bAJt1DQXaj8XhXy_L2lcbtA-cn8H4ak9aTt9KcZ_an6m9QeI6byO</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Collinet, Claudio</creator><creator>Rauzi, Matteo</creator><creator>Lenne, Pierre-François</creator><creator>Lecuit, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6313-0668</orcidid></search><sort><creationdate>20151001</creationdate><title>Local and tissue-scale forces drive oriented junction growth during tissue extension</title><author>Collinet, Claudio ; Rauzi, Matteo ; Lenne, Pierre-François ; Lecuit, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-c9d3e2f401447146aedeee120e3fbe03ce279c7a7b32b847733ec32df2e633193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14</topic><topic>14/19</topic><topic>631/136/1660</topic><topic>631/136/334/1582/715</topic><topic>631/80/79/2028</topic><topic>64/24</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Body Patterning - genetics</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cancer Research</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Biology</topic><topic>Cell development (Biology)</topic><topic>Cell Tracking - methods</topic><topic>Cellular Biology</topic><topic>Developmental Biology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Fluid flow</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Intercellular Junctions - metabolism</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Methods</topic><topic>Microscopy, Confocal</topic><topic>Observations</topic><topic>Red Fluorescent Protein</topic><topic>RNA Interference</topic><topic>Stem Cells</topic><topic>Time-Lapse Imaging</topic><topic>Tissue engineering</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collinet, Claudio</creatorcontrib><creatorcontrib>Rauzi, Matteo</creatorcontrib><creatorcontrib>Lenne, Pierre-François</creatorcontrib><creatorcontrib>Lecuit, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collinet, Claudio</au><au>Rauzi, Matteo</au><au>Lenne, Pierre-François</au><au>Lecuit, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and tissue-scale forces drive oriented junction growth during tissue extension</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>17</volume><issue>10</issue><spage>1247</spage><epage>1258</epage><pages>1247-1258</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Convergence–extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior–posterior neighbours followed by growth of new junctions between dorsal–ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence–extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell–cell displacement. Lecuit and colleagues use live imaging and laser ablation approaches to show that germ-band extension of the Drosophila embryo is associated with new junction growth, which is dependent on both tissue-level and local forces.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26389664</pmid><doi>10.1038/ncb3226</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6313-0668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2015-10, Vol.17 (10), p.1247-1258
issn 1465-7392
1476-4679
language eng
recordid cdi_hal_primary_oai_HAL_hal_01428973v1
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14
14/19
631/136/1660
631/136/334/1582/715
631/80/79/2028
64/24
Animals
Animals, Genetically Modified
Body Patterning - genetics
Cadherins - genetics
Cadherins - metabolism
Cancer Research
Cell Adhesion - genetics
Cell Biology
Cell development (Biology)
Cell Tracking - methods
Cellular Biology
Developmental Biology
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - metabolism
Fluid flow
Fluorescence Recovery After Photobleaching
Gene Expression Regulation, Developmental
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Intercellular Junctions - metabolism
Life Sciences
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Methods
Microscopy, Confocal
Observations
Red Fluorescent Protein
RNA Interference
Stem Cells
Time-Lapse Imaging
Tissue engineering
Tissues
title Local and tissue-scale forces drive oriented junction growth during tissue extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20tissue-scale%20forces%20drive%20oriented%20junction%20growth%20during%20tissue%20extension&rft.jtitle=Nature%20cell%20biology&rft.au=Collinet,%20Claudio&rft.date=2015-10-01&rft.volume=17&rft.issue=10&rft.spage=1247&rft.epage=1258&rft.pages=1247-1258&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3226&rft_dat=%3Cgale_hal_p%3EA431082951%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766133154&rft_id=info:pmid/26389664&rft_galeid=A431082951&rfr_iscdi=true