Data mining-based materialized view and index selection in data warehouses
Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent information systems 2009-08, Vol.33 (1), p.65-93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Journal of intelligent information systems |
container_volume | 33 |
creator | Aouiche, Kamel Darmont, Jérôme |
description | Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes. |
doi_str_mv | 10.1007/s10844-009-0080-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01424294v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1775635841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKs_wNviQfCwOslms5tjqR9VCl56D-lmtk3Zj5psW_XXm2VFQfAQwrw878wkLyGXFG4pQHbnKeScxwAynBxiOCIjmmZJnIksPSYjkCyNpQR2Ss6830AAcwEj8nKvOx3VtrHNKl5qjyaqdYfO6sp-hmJv8RDpxkS2Mfgeeayw6GzbhDoyvfWgHa7bnUd_Tk5KXXm8-L7HZPH4sJjO4vnr0_N0Mo8LnssuFiZZFgYzmWUSjKQl15BjzljGhCj4UiCjKLgsGOPcyDINrC6DJCgkRiZjcjO0XetKbZ2ttftQrbZqNpmrXgPKGWeS72lgrwd269q3HfpO1dYXWFW6wbCzSnguGKdJAK_-gJt255rwDMUAaM6lEAGiA1S41nuH5c94CqpPQQ0pqPC5qk9BQfCwweMD26zQ_Tb-3_QFfWaIRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200184966</pqid></control><display><type>article</type><title>Data mining-based materialized view and index selection in data warehouses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aouiche, Kamel ; Darmont, Jérôme</creator><creatorcontrib>Aouiche, Kamel ; Darmont, Jérôme</creatorcontrib><description>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-009-0080-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Data mining ; Data Structures and Information Theory ; Data warehouses ; Indexes ; Information storage ; Information Storage and Retrieval ; IT in Business ; Natural Language Processing (NLP) ; Optimization ; Queries ; Workloads</subject><ispartof>Journal of intelligent information systems, 2009-08, Vol.33 (1), p.65-93</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</citedby><cites>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</cites><orcidid>0000-0003-1491-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10844-009-0080-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10844-009-0080-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01424294$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouiche, Kamel</creatorcontrib><creatorcontrib>Darmont, Jérôme</creatorcontrib><title>Data mining-based materialized view and index selection in data warehouses</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Data warehouses</subject><subject>Indexes</subject><subject>Information storage</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Natural Language Processing (NLP)</subject><subject>Optimization</subject><subject>Queries</subject><subject>Workloads</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhoMoWKs_wNviQfCwOslms5tjqR9VCl56D-lmtk3Zj5psW_XXm2VFQfAQwrw878wkLyGXFG4pQHbnKeScxwAynBxiOCIjmmZJnIksPSYjkCyNpQR2Ss6830AAcwEj8nKvOx3VtrHNKl5qjyaqdYfO6sp-hmJv8RDpxkS2Mfgeeayw6GzbhDoyvfWgHa7bnUd_Tk5KXXm8-L7HZPH4sJjO4vnr0_N0Mo8LnssuFiZZFgYzmWUSjKQl15BjzljGhCj4UiCjKLgsGOPcyDINrC6DJCgkRiZjcjO0XetKbZ2ttftQrbZqNpmrXgPKGWeS72lgrwd269q3HfpO1dYXWFW6wbCzSnguGKdJAK_-gJt255rwDMUAaM6lEAGiA1S41nuH5c94CqpPQQ0pqPC5qk9BQfCwweMD26zQ_Tb-3_QFfWaIRg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Aouiche, Kamel</creator><creator>Darmont, Jérôme</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1491-384X</orcidid></search><sort><creationdate>20090801</creationdate><title>Data mining-based materialized view and index selection in data warehouses</title><author>Aouiche, Kamel ; Darmont, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Data warehouses</topic><topic>Indexes</topic><topic>Information storage</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Natural Language Processing (NLP)</topic><topic>Optimization</topic><topic>Queries</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouiche, Kamel</creatorcontrib><creatorcontrib>Darmont, Jérôme</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouiche, Kamel</au><au>Darmont, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining-based materialized view and index selection in data warehouses</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>65</spage><epage>93</epage><pages>65-93</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10844-009-0080-0</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-1491-384X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9902 |
ispartof | Journal of intelligent information systems, 2009-08, Vol.33 (1), p.65-93 |
issn | 0925-9902 1573-7675 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01424294v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Data mining Data Structures and Information Theory Data warehouses Indexes Information storage Information Storage and Retrieval IT in Business Natural Language Processing (NLP) Optimization Queries Workloads |
title | Data mining-based materialized view and index selection in data warehouses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining-based%20materialized%20view%20and%20index%20selection%20in%20data%20warehouses&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Aouiche,%20Kamel&rft.date=2009-08-01&rft.volume=33&rft.issue=1&rft.spage=65&rft.epage=93&rft.pages=65-93&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-009-0080-0&rft_dat=%3Cproquest_hal_p%3E1775635841%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200184966&rft_id=info:pmid/&rfr_iscdi=true |