Data mining-based materialized view and index selection in data warehouses

Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent information systems 2009-08, Vol.33 (1), p.65-93
Hauptverfasser: Aouiche, Kamel, Darmont, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 65
container_title Journal of intelligent information systems
container_volume 33
creator Aouiche, Kamel
Darmont, Jérôme
description Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.
doi_str_mv 10.1007/s10844-009-0080-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01424294v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1775635841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKs_wNviQfCwOslms5tjqR9VCl56D-lmtk3Zj5psW_XXm2VFQfAQwrw878wkLyGXFG4pQHbnKeScxwAynBxiOCIjmmZJnIksPSYjkCyNpQR2Ss6830AAcwEj8nKvOx3VtrHNKl5qjyaqdYfO6sp-hmJv8RDpxkS2Mfgeeayw6GzbhDoyvfWgHa7bnUd_Tk5KXXm8-L7HZPH4sJjO4vnr0_N0Mo8LnssuFiZZFgYzmWUSjKQl15BjzljGhCj4UiCjKLgsGOPcyDINrC6DJCgkRiZjcjO0XetKbZ2ttftQrbZqNpmrXgPKGWeS72lgrwd269q3HfpO1dYXWFW6wbCzSnguGKdJAK_-gJt255rwDMUAaM6lEAGiA1S41nuH5c94CqpPQQ0pqPC5qk9BQfCwweMD26zQ_Tb-3_QFfWaIRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200184966</pqid></control><display><type>article</type><title>Data mining-based materialized view and index selection in data warehouses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aouiche, Kamel ; Darmont, Jérôme</creator><creatorcontrib>Aouiche, Kamel ; Darmont, Jérôme</creatorcontrib><description>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-009-0080-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Data mining ; Data Structures and Information Theory ; Data warehouses ; Indexes ; Information storage ; Information Storage and Retrieval ; IT in Business ; Natural Language Processing (NLP) ; Optimization ; Queries ; Workloads</subject><ispartof>Journal of intelligent information systems, 2009-08, Vol.33 (1), p.65-93</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</citedby><cites>FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</cites><orcidid>0000-0003-1491-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10844-009-0080-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10844-009-0080-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01424294$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouiche, Kamel</creatorcontrib><creatorcontrib>Darmont, Jérôme</creatorcontrib><title>Data mining-based materialized view and index selection in data warehouses</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Data warehouses</subject><subject>Indexes</subject><subject>Information storage</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Natural Language Processing (NLP)</subject><subject>Optimization</subject><subject>Queries</subject><subject>Workloads</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhoMoWKs_wNviQfCwOslms5tjqR9VCl56D-lmtk3Zj5psW_XXm2VFQfAQwrw878wkLyGXFG4pQHbnKeScxwAynBxiOCIjmmZJnIksPSYjkCyNpQR2Ss6830AAcwEj8nKvOx3VtrHNKl5qjyaqdYfO6sp-hmJv8RDpxkS2Mfgeeayw6GzbhDoyvfWgHa7bnUd_Tk5KXXm8-L7HZPH4sJjO4vnr0_N0Mo8LnssuFiZZFgYzmWUSjKQl15BjzljGhCj4UiCjKLgsGOPcyDINrC6DJCgkRiZjcjO0XetKbZ2ttftQrbZqNpmrXgPKGWeS72lgrwd269q3HfpO1dYXWFW6wbCzSnguGKdJAK_-gJt255rwDMUAaM6lEAGiA1S41nuH5c94CqpPQQ0pqPC5qk9BQfCwweMD26zQ_Tb-3_QFfWaIRg</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Aouiche, Kamel</creator><creator>Darmont, Jérôme</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1491-384X</orcidid></search><sort><creationdate>20090801</creationdate><title>Data mining-based materialized view and index selection in data warehouses</title><author>Aouiche, Kamel ; Darmont, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6d3bcde797790d91f4a08e8227266c4b6e21e649c2244d9f5de7af1e66103d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Data warehouses</topic><topic>Indexes</topic><topic>Information storage</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Natural Language Processing (NLP)</topic><topic>Optimization</topic><topic>Queries</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouiche, Kamel</creatorcontrib><creatorcontrib>Darmont, Jérôme</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouiche, Kamel</au><au>Darmont, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining-based materialized view and index selection in data warehouses</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>65</spage><epage>93</epage><pages>65-93</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view–index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10844-009-0080-0</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-1491-384X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2009-08, Vol.33 (1), p.65-93
issn 0925-9902
1573-7675
language eng
recordid cdi_hal_primary_oai_HAL_hal_01424294v1
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Data mining
Data Structures and Information Theory
Data warehouses
Indexes
Information storage
Information Storage and Retrieval
IT in Business
Natural Language Processing (NLP)
Optimization
Queries
Workloads
title Data mining-based materialized view and index selection in data warehouses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining-based%20materialized%20view%20and%20index%20selection%20in%20data%20warehouses&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Aouiche,%20Kamel&rft.date=2009-08-01&rft.volume=33&rft.issue=1&rft.spage=65&rft.epage=93&rft.pages=65-93&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-009-0080-0&rft_dat=%3Cproquest_hal_p%3E1775635841%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200184966&rft_id=info:pmid/&rfr_iscdi=true