Normal forms and embeddings for power-log transseries

Dulac series are asymptotic expansions of first return maps in a neighborhood of a hyperbolic polycycle. In this article, we consider two algebras of power-log transseries (generalized series) which extend the algebra of Dulac series. We give a formal normal form and prove a formal embedding theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2016-11, Vol.303, p.888-953
Hauptverfasser: Mardešić, P., Resman, M., Rolin, J.-P., Županović, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 953
container_issue
container_start_page 888
container_title Advances in mathematics (New York. 1965)
container_volume 303
creator Mardešić, P.
Resman, M.
Rolin, J.-P.
Županović, V.
description Dulac series are asymptotic expansions of first return maps in a neighborhood of a hyperbolic polycycle. In this article, we consider two algebras of power-log transseries (generalized series) which extend the algebra of Dulac series. We give a formal normal form and prove a formal embedding theorem for transseries in these algebras.
doi_str_mv 10.1016/j.aim.2016.08.030
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01414966v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870816302638</els_id><sourcerecordid>S0001870816302638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-f72076758239f81fbdec9aff340296fcc82fa156556dc2b2cb83fce8df70fa843</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG-9emidpG2a4GlZ1BUWveg5pMlkzdI_S1JW_PamrHj09GYe7w3Mj5BbCgUFyu_3hfZ9wdJYgCighDOyoCAhZyDYOVkAAM1FA-KSXMW4T6usqFyQ-nUMve4ylyRmerAZ9i1a64ddnM3sMH5hyLtxl01BDzFi8BivyYXTXcSbX12Sj6fH9_Um3749v6xX29yUTTXlrmHQ8KYWrJROUNdaNFI7V1bAJHfGCOY0rXldc2tYy0wrSmdQWNeA06Iql-TudPdTd-oQfK_Dtxq1V5vVVs0e0IpWkvMjTVl6ypowxhjQ_RUoqJmR2qvESM2MFAiVGKXOw6mD6Ymjx6Ci8TgYtD6gmZQd_T_tHx72bmI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal forms and embeddings for power-log transseries</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mardešić, P. ; Resman, M. ; Rolin, J.-P. ; Županović, V.</creator><creatorcontrib>Mardešić, P. ; Resman, M. ; Rolin, J.-P. ; Županović, V.</creatorcontrib><description>Dulac series are asymptotic expansions of first return maps in a neighborhood of a hyperbolic polycycle. In this article, we consider two algebras of power-log transseries (generalized series) which extend the algebra of Dulac series. We give a formal normal form and prove a formal embedding theorem for transseries in these algebras.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2016.08.030</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Classical Analysis and ODEs ; Dulac map ; Dynamical Systems ; Embedding in a flow ; Iteration theory ; Mathematics ; Normal forms ; Transseries</subject><ispartof>Advances in mathematics (New York. 1965), 2016-11, Vol.303, p.888-953</ispartof><rights>2016 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-f72076758239f81fbdec9aff340296fcc82fa156556dc2b2cb83fce8df70fa843</citedby><cites>FETCH-LOGICAL-c374t-f72076758239f81fbdec9aff340296fcc82fa156556dc2b2cb83fce8df70fa843</cites><orcidid>0000-0001-8253-5962 ; 0000-0002-9781-8401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001870816302638$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://u-bourgogne.hal.science/hal-01414966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mardešić, P.</creatorcontrib><creatorcontrib>Resman, M.</creatorcontrib><creatorcontrib>Rolin, J.-P.</creatorcontrib><creatorcontrib>Županović, V.</creatorcontrib><title>Normal forms and embeddings for power-log transseries</title><title>Advances in mathematics (New York. 1965)</title><description>Dulac series are asymptotic expansions of first return maps in a neighborhood of a hyperbolic polycycle. In this article, we consider two algebras of power-log transseries (generalized series) which extend the algebra of Dulac series. We give a formal normal form and prove a formal embedding theorem for transseries in these algebras.</description><subject>Classical Analysis and ODEs</subject><subject>Dulac map</subject><subject>Dynamical Systems</subject><subject>Embedding in a flow</subject><subject>Iteration theory</subject><subject>Mathematics</subject><subject>Normal forms</subject><subject>Transseries</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG-9emidpG2a4GlZ1BUWveg5pMlkzdI_S1JW_PamrHj09GYe7w3Mj5BbCgUFyu_3hfZ9wdJYgCighDOyoCAhZyDYOVkAAM1FA-KSXMW4T6usqFyQ-nUMve4ylyRmerAZ9i1a64ddnM3sMH5hyLtxl01BDzFi8BivyYXTXcSbX12Sj6fH9_Um3749v6xX29yUTTXlrmHQ8KYWrJROUNdaNFI7V1bAJHfGCOY0rXldc2tYy0wrSmdQWNeA06Iql-TudPdTd-oQfK_Dtxq1V5vVVs0e0IpWkvMjTVl6ypowxhjQ_RUoqJmR2qvESM2MFAiVGKXOw6mD6Ymjx6Ci8TgYtD6gmZQd_T_tHx72bmI</recordid><startdate>20161105</startdate><enddate>20161105</enddate><creator>Mardešić, P.</creator><creator>Resman, M.</creator><creator>Rolin, J.-P.</creator><creator>Županović, V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8253-5962</orcidid><orcidid>https://orcid.org/0000-0002-9781-8401</orcidid></search><sort><creationdate>20161105</creationdate><title>Normal forms and embeddings for power-log transseries</title><author>Mardešić, P. ; Resman, M. ; Rolin, J.-P. ; Županović, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-f72076758239f81fbdec9aff340296fcc82fa156556dc2b2cb83fce8df70fa843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical Analysis and ODEs</topic><topic>Dulac map</topic><topic>Dynamical Systems</topic><topic>Embedding in a flow</topic><topic>Iteration theory</topic><topic>Mathematics</topic><topic>Normal forms</topic><topic>Transseries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mardešić, P.</creatorcontrib><creatorcontrib>Resman, M.</creatorcontrib><creatorcontrib>Rolin, J.-P.</creatorcontrib><creatorcontrib>Županović, V.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mardešić, P.</au><au>Resman, M.</au><au>Rolin, J.-P.</au><au>Županović, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal forms and embeddings for power-log transseries</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2016-11-05</date><risdate>2016</risdate><volume>303</volume><spage>888</spage><epage>953</epage><pages>888-953</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Dulac series are asymptotic expansions of first return maps in a neighborhood of a hyperbolic polycycle. In this article, we consider two algebras of power-log transseries (generalized series) which extend the algebra of Dulac series. We give a formal normal form and prove a formal embedding theorem for transseries in these algebras.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2016.08.030</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0001-8253-5962</orcidid><orcidid>https://orcid.org/0000-0002-9781-8401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2016-11, Vol.303, p.888-953
issn 0001-8708
1090-2082
language eng
recordid cdi_hal_primary_oai_HAL_hal_01414966v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classical Analysis and ODEs
Dulac map
Dynamical Systems
Embedding in a flow
Iteration theory
Mathematics
Normal forms
Transseries
title Normal forms and embeddings for power-log transseries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20forms%20and%20embeddings%20for%20power-log%20transseries&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Marde%C5%A1i%C4%87,%20P.&rft.date=2016-11-05&rft.volume=303&rft.spage=888&rft.epage=953&rft.pages=888-953&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2016.08.030&rft_dat=%3Celsevier_hal_p%3ES0001870816302638%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870816302638&rfr_iscdi=true