Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights
Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations. When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical path length of such graphs involves computing ma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2016-11, Vol.27 (11), p.3158-3171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3171 |
---|---|
container_issue | 11 |
container_start_page | 3158 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 27 |
creator | Canon, Louis-Claude Jeannot, Emmanuel |
description | Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations. When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical path length of such graphs involves computing maximums and sums of possibly dependent random variables. The discrete version of this evaluation problem is known to be #P-hard. Here, we propose two heuristics, CorLCA and Cordyn, to compute such lengths. They approximate the input random variables and the intermediate ones as normal random variables, and they precisely take into account correlations with two distinct mechanisms: through lowest common ancestor queries for CorLCA and with a dynamic programming approach for Cordyn. Moreover, we empirically compare some classical methods from the literature and confront them to our solutions. Simulations on a large set of cases indicate that CorLCA and Cordyn constitute each a new relevant trade-off in terms of rapidity and precision. |
doi_str_mv | 10.1109/TPDS.2016.2528983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01412922v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7405345</ieee_id><sourcerecordid>4224029111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-477df13be9bbc021801ddfefd390fc7f25bcc9a7a35864fb0254d83539612c1c3</originalsourceid><addsrcrecordid>eNo9kU1PAyEQhjdGE2v1BxgvJJ48bGVg6S7Hpq3WZBONH_FIWBZamnapsNvGfy9rjaeBeZ8ZmHmT5BrwCADz-_eX2duIYBiPCCMFL-hJMgDGipRAQU_jGWcs5QT4eXIRwhpjyBjOBkk7dd7rjWyta9LJQXqNFrrzNrRWBWScR_O93HRRb5aoXWk0i5K3VdcXIGd-c6Vrljq06EW2K1TqZhlDlCSaTR7Rwcbbq2xqt0Wf2i5XbbhMzozcBH31F4fJx8P8fbpIy-fHp-mkTBXNcZtmeV4boJXmVaVwHARDXRttasqxUbkhrFKKy1xSVowzU2HCsrqgjPIxEAWKDpO7Y9-V3Iidt1vpv4WTViwmpehzcQtAOCF7iOztkd1599XFacTadb6J3xNxgxCfj2yk4Egp70Lw2vy3BSx6I0RvhOiNEH9GxJqbY43VWv_zeYYZzRj9ARQQg9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831021141</pqid></control><display><type>article</type><title>Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights</title><source>IEEE Electronic Library (IEL)</source><creator>Canon, Louis-Claude ; Jeannot, Emmanuel</creator><creatorcontrib>Canon, Louis-Claude ; Jeannot, Emmanuel</creatorcontrib><description>Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations. When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical path length of such graphs involves computing maximums and sums of possibly dependent random variables. The discrete version of this evaluation problem is known to be #P-hard. Here, we propose two heuristics, CorLCA and Cordyn, to compute such lengths. They approximate the input random variables and the intermediate ones as normal random variables, and they precisely take into account correlations with two distinct mechanisms: through lowest common ancestor queries for CorLCA and with a dynamic programming approach for Cordyn. Moreover, we empirically compare some classical methods from the literature and confront them to our solutions. Simulations on a large set of cases indicate that CorLCA and Cordyn constitute each a new relevant trade-off in terms of rapidity and precision.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2016.2528983</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer Science ; Context ; Critical path ; Distributed, Parallel, and Cluster Computing ; graph heuristic ; PERT ; Processor scheduling ; Random variables ; Schedules ; Scheduling ; Stochastic scheduling ; Uncertainty</subject><ispartof>IEEE transactions on parallel and distributed systems, 2016-11, Vol.27 (11), p.3158-3171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-477df13be9bbc021801ddfefd390fc7f25bcc9a7a35864fb0254d83539612c1c3</citedby><cites>FETCH-LOGICAL-c370t-477df13be9bbc021801ddfefd390fc7f25bcc9a7a35864fb0254d83539612c1c3</cites><orcidid>0000-0002-5458-0982 ; 0000-0002-3956-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7405345$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7405345$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-01412922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Canon, Louis-Claude</creatorcontrib><creatorcontrib>Jeannot, Emmanuel</creatorcontrib><title>Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations. When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical path length of such graphs involves computing maximums and sums of possibly dependent random variables. The discrete version of this evaluation problem is known to be #P-hard. Here, we propose two heuristics, CorLCA and Cordyn, to compute such lengths. They approximate the input random variables and the intermediate ones as normal random variables, and they precisely take into account correlations with two distinct mechanisms: through lowest common ancestor queries for CorLCA and with a dynamic programming approach for Cordyn. Moreover, we empirically compare some classical methods from the literature and confront them to our solutions. Simulations on a large set of cases indicate that CorLCA and Cordyn constitute each a new relevant trade-off in terms of rapidity and precision.</description><subject>Computer Science</subject><subject>Context</subject><subject>Critical path</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>graph heuristic</subject><subject>PERT</subject><subject>Processor scheduling</subject><subject>Random variables</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Stochastic scheduling</subject><subject>Uncertainty</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1PAyEQhjdGE2v1BxgvJJ48bGVg6S7Hpq3WZBONH_FIWBZamnapsNvGfy9rjaeBeZ8ZmHmT5BrwCADz-_eX2duIYBiPCCMFL-hJMgDGipRAQU_jGWcs5QT4eXIRwhpjyBjOBkk7dd7rjWyta9LJQXqNFrrzNrRWBWScR_O93HRRb5aoXWk0i5K3VdcXIGd-c6Vrljq06EW2K1TqZhlDlCSaTR7Rwcbbq2xqt0Wf2i5XbbhMzozcBH31F4fJx8P8fbpIy-fHp-mkTBXNcZtmeV4boJXmVaVwHARDXRttasqxUbkhrFKKy1xSVowzU2HCsrqgjPIxEAWKDpO7Y9-V3Iidt1vpv4WTViwmpehzcQtAOCF7iOztkd1599XFacTadb6J3xNxgxCfj2yk4Egp70Lw2vy3BSx6I0RvhOiNEH9GxJqbY43VWv_zeYYZzRj9ARQQg9k</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Canon, Louis-Claude</creator><creator>Jeannot, Emmanuel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5458-0982</orcidid><orcidid>https://orcid.org/0000-0002-3956-2997</orcidid></search><sort><creationdate>20161101</creationdate><title>Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights</title><author>Canon, Louis-Claude ; Jeannot, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-477df13be9bbc021801ddfefd390fc7f25bcc9a7a35864fb0254d83539612c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Context</topic><topic>Critical path</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>graph heuristic</topic><topic>PERT</topic><topic>Processor scheduling</topic><topic>Random variables</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Stochastic scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canon, Louis-Claude</creatorcontrib><creatorcontrib>Jeannot, Emmanuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Canon, Louis-Claude</au><au>Jeannot, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>27</volume><issue>11</issue><spage>3158</spage><epage>3171</epage><pages>3158-3171</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Coping with uncertainties when scheduling task graphs on parallel machines requires to perform non-trivial evaluations. When considering that each computation and communication duration is a random variable, evaluating the distribution of the critical path length of such graphs involves computing maximums and sums of possibly dependent random variables. The discrete version of this evaluation problem is known to be #P-hard. Here, we propose two heuristics, CorLCA and Cordyn, to compute such lengths. They approximate the input random variables and the intermediate ones as normal random variables, and they precisely take into account correlations with two distinct mechanisms: through lowest common ancestor queries for CorLCA and with a dynamic programming approach for Cordyn. Moreover, we empirically compare some classical methods from the literature and confront them to our solutions. Simulations on a large set of cases indicate that CorLCA and Cordyn constitute each a new relevant trade-off in terms of rapidity and precision.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2016.2528983</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5458-0982</orcidid><orcidid>https://orcid.org/0000-0002-3956-2997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2016-11, Vol.27 (11), p.3158-3171 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01412922v1 |
source | IEEE Electronic Library (IEL) |
subjects | Computer Science Context Critical path Distributed, Parallel, and Cluster Computing graph heuristic PERT Processor scheduling Random variables Schedules Scheduling Stochastic scheduling Uncertainty |
title | Correlation-Aware Heuristics for Evaluating the Distribution of the Longest Path Length of a DAG with Random Weights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation-Aware%20Heuristics%20for%20Evaluating%20the%20Distribution%20of%20the%20Longest%20Path%20Length%20of%20a%20DAG%20with%20Random%20Weights&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Canon,%20Louis-Claude&rft.date=2016-11-01&rft.volume=27&rft.issue=11&rft.spage=3158&rft.epage=3171&rft.pages=3158-3171&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2016.2528983&rft_dat=%3Cproquest_RIE%3E4224029111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831021141&rft_id=info:pmid/&rft_ieee_id=7405345&rfr_iscdi=true |