O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase

FeFe hydrogenases are the most efficient H$_2$-producing enzymes. However, inactivation by O$_2$ remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2017, Vol.9 (1), p.88-95
Hauptverfasser: Kubas, Adam, Orain, Christophe, de Sancho, David, Saujet, Laure, Sensi, Matteo, Gauquelin, Charles, Meynial Salles, Isabelle, Soucaille, Philippe, Bottin, Hervé, Baffert, Carole, Fourmond, Vincent, Best, Robert, Blumberger, Jochen, Léger, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 88
container_title Nature chemistry
container_volume 9
creator Kubas, Adam
Orain, Christophe
de Sancho, David
Saujet, Laure
Sensi, Matteo
Gauquelin, Charles
Meynial Salles, Isabelle
Soucaille, Philippe
Bottin, Hervé
Baffert, Carole
Fourmond, Vincent
Best, Robert
Blumberger, Jochen
Léger, Christophe
description FeFe hydrogenases are the most efficient H$_2$-producing enzymes. However, inactivation by O$_2$ remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O$_2$ diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O$_2$ results from the four-electron reduction of O$_2$ to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O$_2$ exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
doi_str_mv 10.1038/nchem.2592
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01406025v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01406025v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_01406025v13</originalsourceid><addsrcrecordid>eNqVyrsKwjAUgOEMivfFJziDi0M1F9PaUcTSQXBxDwdztBGbSlMF394qvoDTDx8_Y1PBF4Kr9dKfCioXUqeywwYi0TpaKcX7bBjClfNYKxH3WF8madouyYAdDjMjZ1CTfZwaV3lAb-FrkfOtkQWLJV4IsIGmaNNuT4LgGoLqDBllBMXL1tWFPAYas-4Zb4Emv47YPNsdt3lU4M3ca1di_TIVOpNv9uZjXKx4zKV-CvXP-wbpy0XW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kubas, Adam ; Orain, Christophe ; de Sancho, David ; Saujet, Laure ; Sensi, Matteo ; Gauquelin, Charles ; Meynial Salles, Isabelle ; Soucaille, Philippe ; Bottin, Hervé ; Baffert, Carole ; Fourmond, Vincent ; Best, Robert ; Blumberger, Jochen ; Léger, Christophe</creator><creatorcontrib>Kubas, Adam ; Orain, Christophe ; de Sancho, David ; Saujet, Laure ; Sensi, Matteo ; Gauquelin, Charles ; Meynial Salles, Isabelle ; Soucaille, Philippe ; Bottin, Hervé ; Baffert, Carole ; Fourmond, Vincent ; Best, Robert ; Blumberger, Jochen ; Léger, Christophe</creatorcontrib><description>FeFe hydrogenases are the most efficient H$_2$-producing enzymes. However, inactivation by O$_2$ remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O$_2$ diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O$_2$ results from the four-electron reduction of O$_2$ to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O$_2$ exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.</description><identifier>ISSN: 1755-4330</identifier><identifier>DOI: 10.1038/nchem.2592</identifier><identifier>PMID: 27995927</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Chemical Sciences</subject><ispartof>Nature chemistry, 2017, Vol.9 (1), p.88-95</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1409-4792 ; 0000-0002-1724-7136 ; 0000-0002-0491-7161 ; 0000-0001-9837-6214 ; 0000-0002-8871-6059 ; 0000-0002-1724-7136 ; 0000-0001-9837-6214 ; 0000-0003-1409-4792 ; 0000-0002-8871-6059 ; 0000-0002-0491-7161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01406025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubas, Adam</creatorcontrib><creatorcontrib>Orain, Christophe</creatorcontrib><creatorcontrib>de Sancho, David</creatorcontrib><creatorcontrib>Saujet, Laure</creatorcontrib><creatorcontrib>Sensi, Matteo</creatorcontrib><creatorcontrib>Gauquelin, Charles</creatorcontrib><creatorcontrib>Meynial Salles, Isabelle</creatorcontrib><creatorcontrib>Soucaille, Philippe</creatorcontrib><creatorcontrib>Bottin, Hervé</creatorcontrib><creatorcontrib>Baffert, Carole</creatorcontrib><creatorcontrib>Fourmond, Vincent</creatorcontrib><creatorcontrib>Best, Robert</creatorcontrib><creatorcontrib>Blumberger, Jochen</creatorcontrib><creatorcontrib>Léger, Christophe</creatorcontrib><title>O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase</title><title>Nature chemistry</title><description>FeFe hydrogenases are the most efficient H$_2$-producing enzymes. However, inactivation by O$_2$ remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O$_2$ diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O$_2$ results from the four-electron reduction of O$_2$ to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O$_2$ exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.</description><subject>Chemical Sciences</subject><issn>1755-4330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVyrsKwjAUgOEMivfFJziDi0M1F9PaUcTSQXBxDwdztBGbSlMF394qvoDTDx8_Y1PBF4Kr9dKfCioXUqeywwYi0TpaKcX7bBjClfNYKxH3WF8madouyYAdDjMjZ1CTfZwaV3lAb-FrkfOtkQWLJV4IsIGmaNNuT4LgGoLqDBllBMXL1tWFPAYas-4Zb4Emv47YPNsdt3lU4M3ca1di_TIVOpNv9uZjXKx4zKV-CvXP-wbpy0XW</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kubas, Adam</creator><creator>Orain, Christophe</creator><creator>de Sancho, David</creator><creator>Saujet, Laure</creator><creator>Sensi, Matteo</creator><creator>Gauquelin, Charles</creator><creator>Meynial Salles, Isabelle</creator><creator>Soucaille, Philippe</creator><creator>Bottin, Hervé</creator><creator>Baffert, Carole</creator><creator>Fourmond, Vincent</creator><creator>Best, Robert</creator><creator>Blumberger, Jochen</creator><creator>Léger, Christophe</creator><general>Nature Publishing Group</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1409-4792</orcidid><orcidid>https://orcid.org/0000-0002-1724-7136</orcidid><orcidid>https://orcid.org/0000-0002-0491-7161</orcidid><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid><orcidid>https://orcid.org/0000-0002-1724-7136</orcidid><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0003-1409-4792</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid><orcidid>https://orcid.org/0000-0002-0491-7161</orcidid></search><sort><creationdate>2017</creationdate><title>O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase</title><author>Kubas, Adam ; Orain, Christophe ; de Sancho, David ; Saujet, Laure ; Sensi, Matteo ; Gauquelin, Charles ; Meynial Salles, Isabelle ; Soucaille, Philippe ; Bottin, Hervé ; Baffert, Carole ; Fourmond, Vincent ; Best, Robert ; Blumberger, Jochen ; Léger, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_01406025v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubas, Adam</creatorcontrib><creatorcontrib>Orain, Christophe</creatorcontrib><creatorcontrib>de Sancho, David</creatorcontrib><creatorcontrib>Saujet, Laure</creatorcontrib><creatorcontrib>Sensi, Matteo</creatorcontrib><creatorcontrib>Gauquelin, Charles</creatorcontrib><creatorcontrib>Meynial Salles, Isabelle</creatorcontrib><creatorcontrib>Soucaille, Philippe</creatorcontrib><creatorcontrib>Bottin, Hervé</creatorcontrib><creatorcontrib>Baffert, Carole</creatorcontrib><creatorcontrib>Fourmond, Vincent</creatorcontrib><creatorcontrib>Best, Robert</creatorcontrib><creatorcontrib>Blumberger, Jochen</creatorcontrib><creatorcontrib>Léger, Christophe</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubas, Adam</au><au>Orain, Christophe</au><au>de Sancho, David</au><au>Saujet, Laure</au><au>Sensi, Matteo</au><au>Gauquelin, Charles</au><au>Meynial Salles, Isabelle</au><au>Soucaille, Philippe</au><au>Bottin, Hervé</au><au>Baffert, Carole</au><au>Fourmond, Vincent</au><au>Best, Robert</au><au>Blumberger, Jochen</au><au>Léger, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase</atitle><jtitle>Nature chemistry</jtitle><date>2017</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>1755-4330</issn><abstract>FeFe hydrogenases are the most efficient H$_2$-producing enzymes. However, inactivation by O$_2$ remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O$_2$ diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O$_2$ results from the four-electron reduction of O$_2$ to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O$_2$ exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.</abstract><pub>Nature Publishing Group</pub><pmid>27995927</pmid><doi>10.1038/nchem.2592</doi><orcidid>https://orcid.org/0000-0003-1409-4792</orcidid><orcidid>https://orcid.org/0000-0002-1724-7136</orcidid><orcidid>https://orcid.org/0000-0002-0491-7161</orcidid><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid><orcidid>https://orcid.org/0000-0002-1724-7136</orcidid><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0003-1409-4792</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid><orcidid>https://orcid.org/0000-0002-0491-7161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2017, Vol.9 (1), p.88-95
issn 1755-4330
language eng
recordid cdi_hal_primary_oai_HAL_hal_01406025v1
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Chemical Sciences
title O$_2$ reduction and O$_2$-induced damage at the active site of FeFe hydrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O$_2$%20reduction%20and%20O$_2$-induced%20damage%20at%20the%20active%20site%20of%20FeFe%20hydrogenase&rft.jtitle=Nature%20chemistry&rft.au=Kubas,%20Adam&rft.date=2017&rft.volume=9&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=1755-4330&rft_id=info:doi/10.1038/nchem.2592&rft_dat=%3Chal%3Eoai_HAL_hal_01406025v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27995927&rfr_iscdi=true