On a degenerate problem in the calculus of variations
We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity result...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-02, Vol.371 (2), p.777-807 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 2 |
container_start_page | 777 |
container_title | Transactions of the American Mathematical Society |
container_volume | 371 |
creator | Bouchitté, Guy Bousquet, Pierre |
description | We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem. |
doi_str_mv | 10.1090/tran/7570 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01405468v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01405468v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRMFYP_oM9ePEQO_uRZPdYirZCoBc9L7ObjY3ko-ymBf-9CRW9eRpmeObl5SHknsETAw3LMWC_LLICLkjCQKk0VxlckgQAeKq1LK7JTYyf0wpS5QnJdj1FWvkP3_uAo6eHMNjWd7Tp6bj31GHrju0x0qGmJwwNjs3Qx1tyVWMb_d3PXJD3l-e39TYtd5vX9apMUfBiTL1Fy1AL7QXPhC0Ed8rVUztfoWQAglvrFOpcuhqQKY0sr5xXnCtpLa_Egjyec_fYmkNoOgxfZsDGbFelmW_AJGQyVyf-x7owxBh8_fvAwMxuzOzGzG4m9uHMYhf_wb4BzcNiOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a degenerate problem in the calculus of variations</title><source>American Mathematical Society Publications</source><creator>Bouchitté, Guy ; Bousquet, Pierre</creator><creatorcontrib>Bouchitté, Guy ; Bousquet, Pierre</creatorcontrib><description>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7570</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2019-02, Vol.371 (2), p.777-807</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</citedby><cites>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</cites><orcidid>0000-0002-8551-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-02/S0002-9947-2018-07570-5/S0002-9947-2018-07570-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-02/S0002-9947-2018-07570-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01405468$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouchitté, Guy</creatorcontrib><creatorcontrib>Bousquet, Pierre</creatorcontrib><title>On a degenerate problem in the calculus of variations</title><title>Transactions of the American Mathematical Society</title><description>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRMFYP_oM9ePEQO_uRZPdYirZCoBc9L7ObjY3ko-ymBf-9CRW9eRpmeObl5SHknsETAw3LMWC_LLICLkjCQKk0VxlckgQAeKq1LK7JTYyf0wpS5QnJdj1FWvkP3_uAo6eHMNjWd7Tp6bj31GHrju0x0qGmJwwNjs3Qx1tyVWMb_d3PXJD3l-e39TYtd5vX9apMUfBiTL1Fy1AL7QXPhC0Ed8rVUztfoWQAglvrFOpcuhqQKY0sr5xXnCtpLa_Egjyec_fYmkNoOgxfZsDGbFelmW_AJGQyVyf-x7owxBh8_fvAwMxuzOzGzG4m9uHMYhf_wb4BzcNiOg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Bouchitté, Guy</creator><creator>Bousquet, Pierre</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8551-2640</orcidid></search><sort><creationdate>20190201</creationdate><title>On a degenerate problem in the calculus of variations</title><author>Bouchitté, Guy ; Bousquet, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchitté, Guy</creatorcontrib><creatorcontrib>Bousquet, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchitté, Guy</au><au>Bousquet, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a degenerate problem in the calculus of variations</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>371</volume><issue>2</issue><spage>777</spage><epage>807</epage><pages>777-807</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7570</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8551-2640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2019-02, Vol.371 (2), p.777-807 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01405468v2 |
source | American Mathematical Society Publications |
subjects | Analysis of PDEs Mathematics |
title | On a degenerate problem in the calculus of variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20degenerate%20problem%20in%20the%20calculus%20of%20variations&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Bouchitt%C3%A9,%20Guy&rft.date=2019-02-01&rft.volume=371&rft.issue=2&rft.spage=777&rft.epage=807&rft.pages=777-807&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7570&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01405468v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |