On a degenerate problem in the calculus of variations

We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-02, Vol.371 (2), p.777-807
Hauptverfasser: Bouchitté, Guy, Bousquet, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 2
container_start_page 777
container_title Transactions of the American Mathematical Society
container_volume 371
creator Bouchitté, Guy
Bousquet, Pierre
description We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.
doi_str_mv 10.1090/tran/7570
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01405468v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01405468v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRMFYP_oM9ePEQO_uRZPdYirZCoBc9L7ObjY3ko-ymBf-9CRW9eRpmeObl5SHknsETAw3LMWC_LLICLkjCQKk0VxlckgQAeKq1LK7JTYyf0wpS5QnJdj1FWvkP3_uAo6eHMNjWd7Tp6bj31GHrju0x0qGmJwwNjs3Qx1tyVWMb_d3PXJD3l-e39TYtd5vX9apMUfBiTL1Fy1AL7QXPhC0Ed8rVUztfoWQAglvrFOpcuhqQKY0sr5xXnCtpLa_Egjyec_fYmkNoOgxfZsDGbFelmW_AJGQyVyf-x7owxBh8_fvAwMxuzOzGzG4m9uHMYhf_wb4BzcNiOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a degenerate problem in the calculus of variations</title><source>American Mathematical Society Publications</source><creator>Bouchitté, Guy ; Bousquet, Pierre</creator><creatorcontrib>Bouchitté, Guy ; Bousquet, Pierre</creatorcontrib><description>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7570</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2019-02, Vol.371 (2), p.777-807</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</citedby><cites>FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</cites><orcidid>0000-0002-8551-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-02/S0002-9947-2018-07570-5/S0002-9947-2018-07570-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-02/S0002-9947-2018-07570-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01405468$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouchitté, Guy</creatorcontrib><creatorcontrib>Bousquet, Pierre</creatorcontrib><title>On a degenerate problem in the calculus of variations</title><title>Transactions of the American Mathematical Society</title><description>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRMFYP_oM9ePEQO_uRZPdYirZCoBc9L7ObjY3ko-ymBf-9CRW9eRpmeObl5SHknsETAw3LMWC_LLICLkjCQKk0VxlckgQAeKq1LK7JTYyf0wpS5QnJdj1FWvkP3_uAo6eHMNjWd7Tp6bj31GHrju0x0qGmJwwNjs3Qx1tyVWMb_d3PXJD3l-e39TYtd5vX9apMUfBiTL1Fy1AL7QXPhC0Ed8rVUztfoWQAglvrFOpcuhqQKY0sr5xXnCtpLa_Egjyec_fYmkNoOgxfZsDGbFelmW_AJGQyVyf-x7owxBh8_fvAwMxuzOzGzG4m9uHMYhf_wb4BzcNiOg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Bouchitté, Guy</creator><creator>Bousquet, Pierre</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8551-2640</orcidid></search><sort><creationdate>20190201</creationdate><title>On a degenerate problem in the calculus of variations</title><author>Bouchitté, Guy ; Bousquet, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-ebab1a939e3253b732c8cf757eda410032bbc8a964cf0a189a16dce82284bb2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchitté, Guy</creatorcontrib><creatorcontrib>Bousquet, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchitté, Guy</au><au>Bousquet, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a degenerate problem in the calculus of variations</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>371</volume><issue>2</issue><spage>777</spage><epage>807</epage><pages>777-807</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions and of their level sets. We exploit the uniqueness and the regularity results to explore some of their qualitative properties. In particular, we emphasize the link between the supports of the solutions and the Cheeger problem.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7570</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8551-2640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-02, Vol.371 (2), p.777-807
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_01405468v2
source American Mathematical Society Publications
subjects Analysis of PDEs
Mathematics
title On a degenerate problem in the calculus of variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20degenerate%20problem%20in%20the%20calculus%20of%20variations&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Bouchitt%C3%A9,%20Guy&rft.date=2019-02-01&rft.volume=371&rft.issue=2&rft.spage=777&rft.epage=807&rft.pages=777-807&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7570&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01405468v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true