A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL
This paper presents a hybrid numerical method to solve efficiently a class of highly anisotropic elliptic problems. The anisotropy is aligned with one coordinate axis and its strength is described by a parameter ε ∈ (0, 1], which can largely vary in the study domain. Our hybrid model is based on asy...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2016, Vol.38 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | SIAM journal on scientific computing |
container_volume | 38 |
creator | Crestetto, Anaïs Deluzet, Fabrice Negulescu, Claudia |
description | This paper presents a hybrid numerical method to solve efficiently a class of highly anisotropic elliptic problems. The anisotropy is aligned with one coordinate axis and its strength is described by a parameter ε ∈ (0, 1], which can largely vary in the study domain. Our hybrid model is based on asymptotic techniques and couples (spatially) an asymptotic-preserving model with its asymptotic limit model, the latter being used in regions where the anisotropy parameter ε is small. Adequate coupling conditions link the two models. The aim of this hybrid procedure is to reduce the computational time for problems where the region of small ε-values extends over a significant part of the domain, and this is due to the reduced complexity of the limit model. |
doi_str_mv | 10.1137/15M1011470 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01405302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01405302v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_01405302v13</originalsourceid><addsrcrecordid>eNqVjD9PwzAUxD2ARKFd-ARv7RDwy5-mHZ3EwZbsPMs2oE5RhiKKikCNhMRH4FsTUCVmpjvd_e4Yu0Z-g5iVt1hY5Ih5yc_YDPkqT9ZpWVywy3F84RxX-SadsS8Balt53YCVUVEDLXkQnQ4UPTldgzRGuzgZ56ky0gaoRJANUAdRSajp3hnd3QG10wxE2FoXaeIT52WQ_mHqTs-POqrfzR8ERlsdwVIjzZydPw2Hcbc46RVbtjLWKnkeDv37cf86HD_7t2HfK2H6n4xjzouMpx-Y_Yf9BqstTZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL</title><source>SIAM Journals Online</source><creator>Crestetto, Anaïs ; Deluzet, Fabrice ; Negulescu, Claudia</creator><creatorcontrib>Crestetto, Anaïs ; Deluzet, Fabrice ; Negulescu, Claudia</creatorcontrib><description>This paper presents a hybrid numerical method to solve efficiently a class of highly anisotropic elliptic problems. The anisotropy is aligned with one coordinate axis and its strength is described by a parameter ε ∈ (0, 1], which can largely vary in the study domain. Our hybrid model is based on asymptotic techniques and couples (spatially) an asymptotic-preserving model with its asymptotic limit model, the latter being used in regions where the anisotropy parameter ε is small. Adequate coupling conditions link the two models. The aim of this hybrid procedure is to reduce the computational time for problems where the region of small ε-values extends over a significant part of the domain, and this is due to the reduced complexity of the limit model.</description><identifier>ISSN: 1064-8275</identifier><identifier>DOI: 10.1137/15M1011470</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics</subject><ispartof>SIAM journal on scientific computing, 2016, Vol.38 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3606-1692 ; 0000-0003-3606-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01405302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crestetto, Anaïs</creatorcontrib><creatorcontrib>Deluzet, Fabrice</creatorcontrib><creatorcontrib>Negulescu, Claudia</creatorcontrib><title>A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL</title><title>SIAM journal on scientific computing</title><description>This paper presents a hybrid numerical method to solve efficiently a class of highly anisotropic elliptic problems. The anisotropy is aligned with one coordinate axis and its strength is described by a parameter ε ∈ (0, 1], which can largely vary in the study domain. Our hybrid model is based on asymptotic techniques and couples (spatially) an asymptotic-preserving model with its asymptotic limit model, the latter being used in regions where the anisotropy parameter ε is small. Adequate coupling conditions link the two models. The aim of this hybrid procedure is to reduce the computational time for problems where the region of small ε-values extends over a significant part of the domain, and this is due to the reduced complexity of the limit model.</description><subject>Mathematics</subject><issn>1064-8275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVjD9PwzAUxD2ARKFd-ARv7RDwy5-mHZ3EwZbsPMs2oE5RhiKKikCNhMRH4FsTUCVmpjvd_e4Yu0Z-g5iVt1hY5Ih5yc_YDPkqT9ZpWVywy3F84RxX-SadsS8Balt53YCVUVEDLXkQnQ4UPTldgzRGuzgZ56ky0gaoRJANUAdRSajp3hnd3QG10wxE2FoXaeIT52WQ_mHqTs-POqrfzR8ERlsdwVIjzZydPw2Hcbc46RVbtjLWKnkeDv37cf86HD_7t2HfK2H6n4xjzouMpx-Y_Yf9BqstTZ4</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Crestetto, Anaïs</creator><creator>Deluzet, Fabrice</creator><creator>Negulescu, Claudia</creator><general>Society for Industrial and Applied Mathematics</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3606-1692</orcidid><orcidid>https://orcid.org/0000-0003-3606-1692</orcidid></search><sort><creationdate>2016</creationdate><title>A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL</title><author>Crestetto, Anaïs ; Deluzet, Fabrice ; Negulescu, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_01405302v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crestetto, Anaïs</creatorcontrib><creatorcontrib>Deluzet, Fabrice</creatorcontrib><creatorcontrib>Negulescu, Claudia</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crestetto, Anaïs</au><au>Deluzet, Fabrice</au><au>Negulescu, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2016</date><risdate>2016</risdate><volume>38</volume><issue>3</issue><issn>1064-8275</issn><abstract>This paper presents a hybrid numerical method to solve efficiently a class of highly anisotropic elliptic problems. The anisotropy is aligned with one coordinate axis and its strength is described by a parameter ε ∈ (0, 1], which can largely vary in the study domain. Our hybrid model is based on asymptotic techniques and couples (spatially) an asymptotic-preserving model with its asymptotic limit model, the latter being used in regions where the anisotropy parameter ε is small. Adequate coupling conditions link the two models. The aim of this hybrid procedure is to reduce the computational time for problems where the region of small ε-values extends over a significant part of the domain, and this is due to the reduced complexity of the limit model.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M1011470</doi><orcidid>https://orcid.org/0000-0003-3606-1692</orcidid><orcidid>https://orcid.org/0000-0003-3606-1692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2016, Vol.38 (3) |
issn | 1064-8275 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01405302v1 |
source | SIAM Journals Online |
subjects | Mathematics |
title | A HYBRID METHOD FOR ANISOTROPIC ELLIPTIC PROBLEMS BASED ON THE COUPLING OF AN ASYMPTOTIC-PRESERVINGMETHOD WITH THE ASYMPTOTIC LIMIT MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HYBRID%20METHOD%20FOR%20ANISOTROPIC%20ELLIPTIC%20PROBLEMS%20BASED%20ON%20THE%20COUPLING%20OF%20AN%20ASYMPTOTIC-PRESERVINGMETHOD%20WITH%20THE%20ASYMPTOTIC%20LIMIT%20MODEL&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Crestetto,%20Ana%C3%AFs&rft.date=2016&rft.volume=38&rft.issue=3&rft.issn=1064-8275&rft_id=info:doi/10.1137/15M1011470&rft_dat=%3Chal%3Eoai_HAL_hal_01405302v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |