Compositions of (max, +) automata

This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete event dynamic systems 2015-06, Vol.25 (1-2), p.323-344
Hauptverfasser: Lahaye, Sébastien, Komenda, Jan, Boimond, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 1-2
container_start_page 323
container_title Discrete event dynamic systems
container_volume 25
creator Lahaye, Sébastien
Komenda, Jan
Boimond, Jean-Louis
description This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced. Based on this result, two types of synchronous product of (max, +) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally proposed to represent particular bounded timed Petri nets.
doi_str_mv 10.1007/s10626-014-0186-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01392046v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685799048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-189695adb8a697f884ed57427994a3063e1b411ab090b1e2675fecb0869132ad3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLd4a9HoTPb_sRS1QsCLnpdNutGUJFuziei3d0vEo4dhYPi9N7xHyCXCLQLIu4AgMpECsjhKpOKIzJBLmkqu2TGZgc5YKiTQU3IWwg4AqAY-I1dr3-59qIfadyHxVbJo7ddNcr1M7Dj41g72nJxUtgnu4nfPyevD_ct6k-bPj0_rVZ6WlPMhRaWF5nZbKCu0rJRibssly6TWzFIQ1GHBEG0BGgp0mZC8cmUBSmikmd3SOVlOvu-2Mfu-bm3_bbytzWaVm8MNkOoMmPjEyC4mdt_7j9GFwbR1KF3T2M75MRgUisfHwFREcULL3ofQu-rPG8EcqjNTddGemUN1RkRNNmlCZLs315udH_supv9H9AM9v2zL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685799048</pqid></control><display><type>article</type><title>Compositions of (max, +) automata</title><source>SpringerNature Journals</source><creator>Lahaye, Sébastien ; Komenda, Jan ; Boimond, Jean-Louis</creator><creatorcontrib>Lahaye, Sébastien ; Komenda, Jan ; Boimond, Jean-Louis</creatorcontrib><description>This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced. Based on this result, two types of synchronous product of (max, +) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally proposed to represent particular bounded timed Petri nets.</description><identifier>ISSN: 0924-6703</identifier><identifier>EISSN: 1573-7594</identifier><identifier>DOI: 10.1007/s10626-014-0186-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Composing ; Control ; Convex and Discrete Geometry ; Discrete event systems ; Dynamical systems ; Dynamics ; Electrical Engineering ; Engineering Sciences ; Machines ; Manufacturing ; Mathematics ; Mathematics and Statistics ; Merging ; Operations Research/Decision Theory ; Petri nets ; Processes ; Synchronous ; Systems Theory</subject><ispartof>Discrete event dynamic systems, 2015-06, Vol.25 (1-2), p.323-344</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-189695adb8a697f884ed57427994a3063e1b411ab090b1e2675fecb0869132ad3</citedby><cites>FETCH-LOGICAL-c355t-189695adb8a697f884ed57427994a3063e1b411ab090b1e2675fecb0869132ad3</cites><orcidid>0000-0002-7294-8365 ; 0000-0002-8386-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10626-014-0186-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10626-014-0186-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01392046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lahaye, Sébastien</creatorcontrib><creatorcontrib>Komenda, Jan</creatorcontrib><creatorcontrib>Boimond, Jean-Louis</creatorcontrib><title>Compositions of (max, +) automata</title><title>Discrete event dynamic systems</title><addtitle>Discrete Event Dyn Syst</addtitle><description>This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced. Based on this result, two types of synchronous product of (max, +) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally proposed to represent particular bounded timed Petri nets.</description><subject>Composing</subject><subject>Control</subject><subject>Convex and Discrete Geometry</subject><subject>Discrete event systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrical Engineering</subject><subject>Engineering Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Merging</subject><subject>Operations Research/Decision Theory</subject><subject>Petri nets</subject><subject>Processes</subject><subject>Synchronous</subject><subject>Systems Theory</subject><issn>0924-6703</issn><issn>1573-7594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFY_gLd4a9HoTPb_sRS1QsCLnpdNutGUJFuziei3d0vEo4dhYPi9N7xHyCXCLQLIu4AgMpECsjhKpOKIzJBLmkqu2TGZgc5YKiTQU3IWwg4AqAY-I1dr3-59qIfadyHxVbJo7ddNcr1M7Dj41g72nJxUtgnu4nfPyevD_ct6k-bPj0_rVZ6WlPMhRaWF5nZbKCu0rJRibssly6TWzFIQ1GHBEG0BGgp0mZC8cmUBSmikmd3SOVlOvu-2Mfu-bm3_bbytzWaVm8MNkOoMmPjEyC4mdt_7j9GFwbR1KF3T2M75MRgUisfHwFREcULL3ofQu-rPG8EcqjNTddGemUN1RkRNNmlCZLs315udH_supv9H9AM9v2zL</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lahaye, Sébastien</creator><creator>Komenda, Jan</creator><creator>Boimond, Jean-Louis</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7294-8365</orcidid><orcidid>https://orcid.org/0000-0002-8386-8803</orcidid></search><sort><creationdate>20150601</creationdate><title>Compositions of (max, +) automata</title><author>Lahaye, Sébastien ; Komenda, Jan ; Boimond, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-189695adb8a697f884ed57427994a3063e1b411ab090b1e2675fecb0869132ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Composing</topic><topic>Control</topic><topic>Convex and Discrete Geometry</topic><topic>Discrete event systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrical Engineering</topic><topic>Engineering Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Merging</topic><topic>Operations Research/Decision Theory</topic><topic>Petri nets</topic><topic>Processes</topic><topic>Synchronous</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahaye, Sébastien</creatorcontrib><creatorcontrib>Komenda, Jan</creatorcontrib><creatorcontrib>Boimond, Jean-Louis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete event dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahaye, Sébastien</au><au>Komenda, Jan</au><au>Boimond, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositions of (max, +) automata</atitle><jtitle>Discrete event dynamic systems</jtitle><stitle>Discrete Event Dyn Syst</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>25</volume><issue>1-2</issue><spage>323</spage><epage>344</epage><pages>323-344</pages><issn>0924-6703</issn><eissn>1573-7594</eissn><abstract>This paper presents a compositional modeling approach by means of (max, +) automata. The motivation is to be able to model a complex discrete event system by composing sub-models representing its elementary parts. A direct modeling of safe timed Petri nets using (max, +) automata is first introduced. Based on this result, two types of synchronous product of (max, +) automata are proposed to model safe timed Petri nets obtained by merging places and/or transitions in subnets. An asynchronous product is finally proposed to represent particular bounded timed Petri nets.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10626-014-0186-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7294-8365</orcidid><orcidid>https://orcid.org/0000-0002-8386-8803</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-6703
ispartof Discrete event dynamic systems, 2015-06, Vol.25 (1-2), p.323-344
issn 0924-6703
1573-7594
language eng
recordid cdi_hal_primary_oai_HAL_hal_01392046v1
source SpringerNature Journals
subjects Composing
Control
Convex and Discrete Geometry
Discrete event systems
Dynamical systems
Dynamics
Electrical Engineering
Engineering Sciences
Machines
Manufacturing
Mathematics
Mathematics and Statistics
Merging
Operations Research/Decision Theory
Petri nets
Processes
Synchronous
Systems Theory
title Compositions of (max, +) automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositions%20of%20(max,%20+)%20automata&rft.jtitle=Discrete%20event%20dynamic%20systems&rft.au=Lahaye,%20S%C3%A9bastien&rft.date=2015-06-01&rft.volume=25&rft.issue=1-2&rft.spage=323&rft.epage=344&rft.pages=323-344&rft.issn=0924-6703&rft.eissn=1573-7594&rft_id=info:doi/10.1007/s10626-014-0186-6&rft_dat=%3Cproquest_hal_p%3E1685799048%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685799048&rft_id=info:pmid/&rfr_iscdi=true