Numerical implementation of two nonconforming finite element methods for unilateral contact

We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2000-01, Vol.184 (1), p.99-123
1. Verfasser: Hild, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 99
container_title Computer methods in applied mechanics and engineering
container_volume 184
creator Hild, Patrick
description We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.
doi_str_mv 10.1016/S0045-7825(99)00096-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01390457v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599000961</els_id><sourcerecordid>27596775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</originalsourceid><addsrcrecordid>eNqFkE1PxCAURYnRxPHjJ5iwMMZZVIGWoayMMX4lE12oKxeE0lfFtDACM8Z_L2ONLt1A8jjv3nAQOqDkhBI6O30gpOKFqBk_lnJKCJGzgm6gCa2FLBgt6000-UW20U6MbxkiNWUT9Hy3HCBYo3tsh0UPA7ikk_UO-w6nD4-dd8a7zofBuhfcWWcTYBhBPEB69W3E-Rkvne11gpCT8kLSJu2hrU73EfZ_7l30dHX5eHFTzO-vby_O54WpqjoVtRQN1VwD4wyAtCAaLjnRTUU7qPJJG8ZnjIBuJIiS5wFjUhjKW05r0OUumo65r7pXi2AHHT6V11bdnM_VekZoKfP_xYpm9mhkF8G_LyEmNdhooO-1A7-MigkuZ0LwDPIRNMHHGKD7TaZErbWrb-1q7VRJqb61q3XB4U-BjtlqF7QzNv4tl5TIsszY2YhBFrOyEFQ0FpyB1gYwSbXe_lP0BQ23lxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27596775</pqid></control><display><type>article</type><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><source>Elsevier ScienceDirect Journals</source><creator>Hild, Patrick</creator><creatorcontrib>Hild, Patrick</creatorcontrib><description>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00096-1</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Engineering Sciences ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Global contact condition ; Local contact condition ; Mathematical methods in physics ; Mechanical contact (friction...) ; Mortar finite element method ; Nonmatching meshes ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Unilateral contact</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-01, Vol.184 (1), p.99-123</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2000 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</citedby><cites>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782599000961$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1310933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01390457$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hild, Patrick</creatorcontrib><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><title>Computer methods in applied mechanics and engineering</title><description>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</description><subject>Computational techniques</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Global contact condition</subject><subject>Local contact condition</subject><subject>Mathematical methods in physics</subject><subject>Mechanical contact (friction...)</subject><subject>Mortar finite element method</subject><subject>Nonmatching meshes</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Unilateral contact</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAURYnRxPHjJ5iwMMZZVIGWoayMMX4lE12oKxeE0lfFtDACM8Z_L2ONLt1A8jjv3nAQOqDkhBI6O30gpOKFqBk_lnJKCJGzgm6gCa2FLBgt6000-UW20U6MbxkiNWUT9Hy3HCBYo3tsh0UPA7ikk_UO-w6nD4-dd8a7zofBuhfcWWcTYBhBPEB69W3E-Rkvne11gpCT8kLSJu2hrU73EfZ_7l30dHX5eHFTzO-vby_O54WpqjoVtRQN1VwD4wyAtCAaLjnRTUU7qPJJG8ZnjIBuJIiS5wFjUhjKW05r0OUumo65r7pXi2AHHT6V11bdnM_VekZoKfP_xYpm9mhkF8G_LyEmNdhooO-1A7-MigkuZ0LwDPIRNMHHGKD7TaZErbWrb-1q7VRJqb61q3XB4U-BjtlqF7QzNv4tl5TIsszY2YhBFrOyEFQ0FpyB1gYwSbXe_lP0BQ23lxE</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Hild, Patrick</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20000101</creationdate><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><author>Hild, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational techniques</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Global contact condition</topic><topic>Local contact condition</topic><topic>Mathematical methods in physics</topic><topic>Mechanical contact (friction...)</topic><topic>Mortar finite element method</topic><topic>Nonmatching meshes</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Unilateral contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hild, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hild, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical implementation of two nonconforming finite element methods for unilateral contact</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>184</volume><issue>1</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00096-1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2000-01, Vol.184 (1), p.99-123
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01390457v1
source Elsevier ScienceDirect Journals
subjects Computational techniques
Engineering Sciences
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Global contact condition
Local contact condition
Mathematical methods in physics
Mechanical contact (friction...)
Mortar finite element method
Nonmatching meshes
Physics
Solid mechanics
Structural and continuum mechanics
Unilateral contact
title Numerical implementation of two nonconforming finite element methods for unilateral contact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20implementation%20of%20two%20nonconforming%20finite%20element%20methods%20for%20unilateral%20contact&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hild,%20Patrick&rft.date=2000-01-01&rft.volume=184&rft.issue=1&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00096-1&rft_dat=%3Cproquest_hal_p%3E27596775%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27596775&rft_id=info:pmid/&rft_els_id=S0045782599000961&rfr_iscdi=true