Numerical implementation of two nonconforming finite element methods for unilateral contact
We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both b...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2000-01, Vol.184 (1), p.99-123 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 184 |
creator | Hild, Patrick |
description | We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods. |
doi_str_mv | 10.1016/S0045-7825(99)00096-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01390457v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599000961</els_id><sourcerecordid>27596775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</originalsourceid><addsrcrecordid>eNqFkE1PxCAURYnRxPHjJ5iwMMZZVIGWoayMMX4lE12oKxeE0lfFtDACM8Z_L2ONLt1A8jjv3nAQOqDkhBI6O30gpOKFqBk_lnJKCJGzgm6gCa2FLBgt6000-UW20U6MbxkiNWUT9Hy3HCBYo3tsh0UPA7ikk_UO-w6nD4-dd8a7zofBuhfcWWcTYBhBPEB69W3E-Rkvne11gpCT8kLSJu2hrU73EfZ_7l30dHX5eHFTzO-vby_O54WpqjoVtRQN1VwD4wyAtCAaLjnRTUU7qPJJG8ZnjIBuJIiS5wFjUhjKW05r0OUumo65r7pXi2AHHT6V11bdnM_VekZoKfP_xYpm9mhkF8G_LyEmNdhooO-1A7-MigkuZ0LwDPIRNMHHGKD7TaZErbWrb-1q7VRJqb61q3XB4U-BjtlqF7QzNv4tl5TIsszY2YhBFrOyEFQ0FpyB1gYwSbXe_lP0BQ23lxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27596775</pqid></control><display><type>article</type><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><source>Elsevier ScienceDirect Journals</source><creator>Hild, Patrick</creator><creatorcontrib>Hild, Patrick</creatorcontrib><description>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00096-1</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Engineering Sciences ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Global contact condition ; Local contact condition ; Mathematical methods in physics ; Mechanical contact (friction...) ; Mortar finite element method ; Nonmatching meshes ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Unilateral contact</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-01, Vol.184 (1), p.99-123</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2000 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</citedby><cites>FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782599000961$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1310933$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01390457$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hild, Patrick</creatorcontrib><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><title>Computer methods in applied mechanics and engineering</title><description>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</description><subject>Computational techniques</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Global contact condition</subject><subject>Local contact condition</subject><subject>Mathematical methods in physics</subject><subject>Mechanical contact (friction...)</subject><subject>Mortar finite element method</subject><subject>Nonmatching meshes</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Unilateral contact</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAURYnRxPHjJ5iwMMZZVIGWoayMMX4lE12oKxeE0lfFtDACM8Z_L2ONLt1A8jjv3nAQOqDkhBI6O30gpOKFqBk_lnJKCJGzgm6gCa2FLBgt6000-UW20U6MbxkiNWUT9Hy3HCBYo3tsh0UPA7ikk_UO-w6nD4-dd8a7zofBuhfcWWcTYBhBPEB69W3E-Rkvne11gpCT8kLSJu2hrU73EfZ_7l30dHX5eHFTzO-vby_O54WpqjoVtRQN1VwD4wyAtCAaLjnRTUU7qPJJG8ZnjIBuJIiS5wFjUhjKW05r0OUumo65r7pXi2AHHT6V11bdnM_VekZoKfP_xYpm9mhkF8G_LyEmNdhooO-1A7-MigkuZ0LwDPIRNMHHGKD7TaZErbWrb-1q7VRJqb61q3XB4U-BjtlqF7QzNv4tl5TIsszY2YhBFrOyEFQ0FpyB1gYwSbXe_lP0BQ23lxE</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Hild, Patrick</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20000101</creationdate><title>Numerical implementation of two nonconforming finite element methods for unilateral contact</title><author>Hild, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-897b1a5ae252ee0de7b5950ab41fe4b411b25620eab9e7354112297c15d518ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational techniques</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Global contact condition</topic><topic>Local contact condition</topic><topic>Mathematical methods in physics</topic><topic>Mechanical contact (friction...)</topic><topic>Mortar finite element method</topic><topic>Nonmatching meshes</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Unilateral contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hild, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hild, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical implementation of two nonconforming finite element methods for unilateral contact</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>184</volume><issue>1</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00096-1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2000-01, Vol.184 (1), p.99-123 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01390457v1 |
source | Elsevier ScienceDirect Journals |
subjects | Computational techniques Engineering Sciences Exact sciences and technology Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Global contact condition Local contact condition Mathematical methods in physics Mechanical contact (friction...) Mortar finite element method Nonmatching meshes Physics Solid mechanics Structural and continuum mechanics Unilateral contact |
title | Numerical implementation of two nonconforming finite element methods for unilateral contact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20implementation%20of%20two%20nonconforming%20finite%20element%20methods%20for%20unilateral%20contact&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Hild,%20Patrick&rft.date=2000-01-01&rft.volume=184&rft.issue=1&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00096-1&rft_dat=%3Cproquest_hal_p%3E27596775%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27596775&rft_id=info:pmid/&rft_els_id=S0045782599000961&rfr_iscdi=true |