Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production
Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2010-06, Vol.8 (2), p.135-150 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 8 |
creator | Vos, De Maarten Riès, Stephanie Vanderperren, Katrien Vanrumste, Bart Alario, Francois-Xavier Huffel, Van Sabine Burle, Boris |
description | Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production. |
doi_str_mv | 10.1007/s12021-010-9071-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01384822v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902350765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpadK0PyCXYHIJPbidGdmSdVzCJilsaEnbs9DK8saJbW0kO9B_HxmnKRRKTzOMvnnzxGPsGOETAsjPEQkIc0DIFcjUvGKHWJYqB6jU67nnKiep8IC9i_EOgIQEeMsOCIoKCsBDdn3jev9ousw32fUUbeeyVRjbxtgxZk3wfbZeX2Y3zvpQt8Muztz3vb93Q7Yxw24yO5d9C76e7Nj64T1705guug_P9Yj9vFj_OL_KN18vv5yvNrktuBhzIQulSCChU2JbbFFVDWytMgWWtiYlna1FU4nkUSiqCbCuHJElVysyxPkR-7jo3ppO70Pbm_BLe9Pqq9VGzzNAXhUV0SMm9mxh98E_TC6Oum-jdV1nBuenqBUQL0GK8r-k5ByRpJCJPP2LvPNTGNKXNS-FKpXgIkG4QDb4GINrXpwi6Dk_veSXzIKe89OQdk6ehadt7-qXjd-BJYAWIKanYefCn8v_Vn0CTVOhbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>356959636</pqid></control><display><type>article</type><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</creator><creatorcontrib>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</creatorcontrib><description>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-010-9071-0</identifier><identifier>PMID: 20480401</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Adult ; Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Cognitive science ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Electroencephalography - methods ; Electromyography - methods ; Evoked Potentials ; Female ; Humans ; Language ; Male ; Muscle, Skeletal - physiology ; Neurology ; Neuroscience ; Neurosciences ; Signal Processing, Computer-Assisted ; Speech - physiology ; Time Factors ; Young Adult</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2010-06, Vol.8 (2), p.135-150</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</citedby><cites>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</cites><orcidid>0000-0002-8627-5034 ; 0000-0001-8179-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-010-9071-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-010-9071-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20480401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01384822$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vos, De Maarten</creatorcontrib><creatorcontrib>Riès, Stephanie</creatorcontrib><creatorcontrib>Vanderperren, Katrien</creatorcontrib><creatorcontrib>Vanrumste, Bart</creatorcontrib><creatorcontrib>Alario, Francois-Xavier</creatorcontrib><creatorcontrib>Huffel, Van Sabine</creatorcontrib><creatorcontrib>Burle, Boris</creatorcontrib><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Cognitive science</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Electroencephalography - methods</subject><subject>Electromyography - methods</subject><subject>Evoked Potentials</subject><subject>Female</subject><subject>Humans</subject><subject>Language</subject><subject>Male</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neurology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Speech - physiology</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUFr3DAQhUVpadK0PyCXYHIJPbidGdmSdVzCJilsaEnbs9DK8saJbW0kO9B_HxmnKRRKTzOMvnnzxGPsGOETAsjPEQkIc0DIFcjUvGKHWJYqB6jU67nnKiep8IC9i_EOgIQEeMsOCIoKCsBDdn3jev9ousw32fUUbeeyVRjbxtgxZk3wfbZeX2Y3zvpQt8Muztz3vb93Q7Yxw24yO5d9C76e7Nj64T1705guug_P9Yj9vFj_OL_KN18vv5yvNrktuBhzIQulSCChU2JbbFFVDWytMgWWtiYlna1FU4nkUSiqCbCuHJElVysyxPkR-7jo3ppO70Pbm_BLe9Pqq9VGzzNAXhUV0SMm9mxh98E_TC6Oum-jdV1nBuenqBUQL0GK8r-k5ByRpJCJPP2LvPNTGNKXNS-FKpXgIkG4QDb4GINrXpwi6Dk_veSXzIKe89OQdk6ehadt7-qXjd-BJYAWIKanYefCn8v_Vn0CTVOhbQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Vos, De Maarten</creator><creator>Riès, Stephanie</creator><creator>Vanderperren, Katrien</creator><creator>Vanrumste, Bart</creator><creator>Alario, Francois-Xavier</creator><creator>Huffel, Van Sabine</creator><creator>Burle, Boris</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8627-5034</orcidid><orcidid>https://orcid.org/0000-0001-8179-9034</orcidid></search><sort><creationdate>20100601</creationdate><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><author>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Cognitive science</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Electroencephalography - methods</topic><topic>Electromyography - methods</topic><topic>Evoked Potentials</topic><topic>Female</topic><topic>Humans</topic><topic>Language</topic><topic>Male</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neurology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Speech - physiology</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vos, De Maarten</creatorcontrib><creatorcontrib>Riès, Stephanie</creatorcontrib><creatorcontrib>Vanderperren, Katrien</creatorcontrib><creatorcontrib>Vanrumste, Bart</creatorcontrib><creatorcontrib>Alario, Francois-Xavier</creatorcontrib><creatorcontrib>Huffel, Van Sabine</creatorcontrib><creatorcontrib>Burle, Boris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vos, De Maarten</au><au>Riès, Stephanie</au><au>Vanderperren, Katrien</au><au>Vanrumste, Bart</au><au>Alario, Francois-Xavier</au><au>Huffel, Van Sabine</au><au>Burle, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>8</volume><issue>2</issue><spage>135</spage><epage>150</epage><pages>135-150</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>20480401</pmid><doi>10.1007/s12021-010-9071-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8627-5034</orcidid><orcidid>https://orcid.org/0000-0001-8179-9034</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2010-06, Vol.8 (2), p.135-150 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01384822v1 |
source | MEDLINE; SpringerLink Journals |
subjects | Adult Algorithms Bioinformatics Biomedical and Life Sciences Biomedicine Brain - physiology Cognitive science Computational Biology/Bioinformatics Computer Appl. in Life Sciences Electroencephalography - methods Electromyography - methods Evoked Potentials Female Humans Language Male Muscle, Skeletal - physiology Neurology Neuroscience Neurosciences Signal Processing, Computer-Assisted Speech - physiology Time Factors Young Adult |
title | Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Muscle%20Artifacts%20from%20EEG%20Recordings%20of%20Spoken%20Language%20Production&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Vos,%20De%20Maarten&rft.date=2010-06-01&rft.volume=8&rft.issue=2&rft.spage=135&rft.epage=150&rft.pages=135-150&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-010-9071-0&rft_dat=%3Cproquest_hal_p%3E902350765%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=356959636&rft_id=info:pmid/20480401&rfr_iscdi=true |