Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production

Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2010-06, Vol.8 (2), p.135-150
Hauptverfasser: Vos, De Maarten, Riès, Stephanie, Vanderperren, Katrien, Vanrumste, Bart, Alario, Francois-Xavier, Huffel, Van Sabine, Burle, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 2
container_start_page 135
container_title Neuroinformatics (Totowa, N.J.)
container_volume 8
creator Vos, De Maarten
Riès, Stephanie
Vanderperren, Katrien
Vanrumste, Bart
Alario, Francois-Xavier
Huffel, Van Sabine
Burle, Boris
description Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.
doi_str_mv 10.1007/s12021-010-9071-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01384822v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902350765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpadK0PyCXYHIJPbidGdmSdVzCJilsaEnbs9DK8saJbW0kO9B_HxmnKRRKTzOMvnnzxGPsGOETAsjPEQkIc0DIFcjUvGKHWJYqB6jU67nnKiep8IC9i_EOgIQEeMsOCIoKCsBDdn3jev9ousw32fUUbeeyVRjbxtgxZk3wfbZeX2Y3zvpQt8Muztz3vb93Q7Yxw24yO5d9C76e7Nj64T1705guug_P9Yj9vFj_OL_KN18vv5yvNrktuBhzIQulSCChU2JbbFFVDWytMgWWtiYlna1FU4nkUSiqCbCuHJElVysyxPkR-7jo3ppO70Pbm_BLe9Pqq9VGzzNAXhUV0SMm9mxh98E_TC6Oum-jdV1nBuenqBUQL0GK8r-k5ByRpJCJPP2LvPNTGNKXNS-FKpXgIkG4QDb4GINrXpwi6Dk_veSXzIKe89OQdk6ehadt7-qXjd-BJYAWIKanYefCn8v_Vn0CTVOhbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>356959636</pqid></control><display><type>article</type><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</creator><creatorcontrib>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</creatorcontrib><description>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-010-9071-0</identifier><identifier>PMID: 20480401</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Adult ; Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Cognitive science ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Electroencephalography - methods ; Electromyography - methods ; Evoked Potentials ; Female ; Humans ; Language ; Male ; Muscle, Skeletal - physiology ; Neurology ; Neuroscience ; Neurosciences ; Signal Processing, Computer-Assisted ; Speech - physiology ; Time Factors ; Young Adult</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2010-06, Vol.8 (2), p.135-150</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</citedby><cites>FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</cites><orcidid>0000-0002-8627-5034 ; 0000-0001-8179-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-010-9071-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-010-9071-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20480401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01384822$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vos, De Maarten</creatorcontrib><creatorcontrib>Riès, Stephanie</creatorcontrib><creatorcontrib>Vanderperren, Katrien</creatorcontrib><creatorcontrib>Vanrumste, Bart</creatorcontrib><creatorcontrib>Alario, Francois-Xavier</creatorcontrib><creatorcontrib>Huffel, Van Sabine</creatorcontrib><creatorcontrib>Burle, Boris</creatorcontrib><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Cognitive science</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Electroencephalography - methods</subject><subject>Electromyography - methods</subject><subject>Evoked Potentials</subject><subject>Female</subject><subject>Humans</subject><subject>Language</subject><subject>Male</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neurology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Speech - physiology</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUFr3DAQhUVpadK0PyCXYHIJPbidGdmSdVzCJilsaEnbs9DK8saJbW0kO9B_HxmnKRRKTzOMvnnzxGPsGOETAsjPEQkIc0DIFcjUvGKHWJYqB6jU67nnKiep8IC9i_EOgIQEeMsOCIoKCsBDdn3jev9ousw32fUUbeeyVRjbxtgxZk3wfbZeX2Y3zvpQt8Muztz3vb93Q7Yxw24yO5d9C76e7Nj64T1705guug_P9Yj9vFj_OL_KN18vv5yvNrktuBhzIQulSCChU2JbbFFVDWytMgWWtiYlna1FU4nkUSiqCbCuHJElVysyxPkR-7jo3ppO70Pbm_BLe9Pqq9VGzzNAXhUV0SMm9mxh98E_TC6Oum-jdV1nBuenqBUQL0GK8r-k5ByRpJCJPP2LvPNTGNKXNS-FKpXgIkG4QDb4GINrXpwi6Dk_veSXzIKe89OQdk6ehadt7-qXjd-BJYAWIKanYefCn8v_Vn0CTVOhbQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Vos, De Maarten</creator><creator>Riès, Stephanie</creator><creator>Vanderperren, Katrien</creator><creator>Vanrumste, Bart</creator><creator>Alario, Francois-Xavier</creator><creator>Huffel, Van Sabine</creator><creator>Burle, Boris</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8627-5034</orcidid><orcidid>https://orcid.org/0000-0001-8179-9034</orcidid></search><sort><creationdate>20100601</creationdate><title>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</title><author>Vos, De Maarten ; Riès, Stephanie ; Vanderperren, Katrien ; Vanrumste, Bart ; Alario, Francois-Xavier ; Huffel, Van Sabine ; Burle, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6749926121e96b4b198f0bc9a415cd297ecd6f86804692d201d8e22c2ed92a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Cognitive science</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Electroencephalography - methods</topic><topic>Electromyography - methods</topic><topic>Evoked Potentials</topic><topic>Female</topic><topic>Humans</topic><topic>Language</topic><topic>Male</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neurology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Speech - physiology</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vos, De Maarten</creatorcontrib><creatorcontrib>Riès, Stephanie</creatorcontrib><creatorcontrib>Vanderperren, Katrien</creatorcontrib><creatorcontrib>Vanrumste, Bart</creatorcontrib><creatorcontrib>Alario, Francois-Xavier</creatorcontrib><creatorcontrib>Huffel, Van Sabine</creatorcontrib><creatorcontrib>Burle, Boris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vos, De Maarten</au><au>Riès, Stephanie</au><au>Vanderperren, Katrien</au><au>Vanrumste, Bart</au><au>Alario, Francois-Xavier</au><au>Huffel, Van Sabine</au><au>Burle, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>8</volume><issue>2</issue><spage>135</spage><epage>150</epage><pages>135-150</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>20480401</pmid><doi>10.1007/s12021-010-9071-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8627-5034</orcidid><orcidid>https://orcid.org/0000-0001-8179-9034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2010-06, Vol.8 (2), p.135-150
issn 1539-2791
1559-0089
language eng
recordid cdi_hal_primary_oai_HAL_hal_01384822v1
source MEDLINE; SpringerLink Journals
subjects Adult
Algorithms
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Cognitive science
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Electroencephalography - methods
Electromyography - methods
Evoked Potentials
Female
Humans
Language
Male
Muscle, Skeletal - physiology
Neurology
Neuroscience
Neurosciences
Signal Processing, Computer-Assisted
Speech - physiology
Time Factors
Young Adult
title Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Muscle%20Artifacts%20from%20EEG%20Recordings%20of%20Spoken%20Language%20Production&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Vos,%20De%20Maarten&rft.date=2010-06-01&rft.volume=8&rft.issue=2&rft.spage=135&rft.epage=150&rft.pages=135-150&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-010-9071-0&rft_dat=%3Cproquest_hal_p%3E902350765%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=356959636&rft_id=info:pmid/20480401&rfr_iscdi=true