Ultradilute Low-Dimensional Liquids
We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-09, Vol.117 (10), p.100401-100401, Article 100401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100401 |
---|---|
container_issue | 10 |
container_start_page | 100401 |
container_title | Physical review letters |
container_volume | 117 |
creator | Petrov, D S Astrakharchik, G E |
description | We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a minimum at a finite density corresponding to a liquid state. We derive the Gross-Pitaevskii equation to describe droplets of such liquids and solve it analytically in the one-dimensional case. |
doi_str_mv | 10.1103/PhysRevLett.117.100401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01380145v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845826331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b33dcc73c98ddadb6b7e5262aa383eaa1a5153fd3b7a8621d4128e474afedcf63</originalsourceid><addsrcrecordid>eNqNUU1LAzEQDaLYWv0LpeBFD6szSTZJj6V-VFhQxJ5DNsnSlW233exW-u_durV49DAM83hv5g2PkCHCHSKw-7fFLrz7beLrugXkHQJwwBPSR5DjSCLyU9IHYBiNAWSPXITwCQBIhTonPSoFEzyWfXI9L-rKuLxoaj9Kyq_oIV_6VcjLlSlGSb5pchcuyVlmiuCvDn1A5k-PH9NZlLw-v0wnSWS5ZHWUMuaslcyOlXPGpSKVPqaCGsMU88agiTFmmWOpNEpQdByp8lxyk3lnM8EG5LbbuzCFXlf50lQ7XZpczyaJ3mOATAHyeIstFzuuDY3Vlbe-sqb-YR-HfVGQVLdPI6Wt5qbTrKty0_hQ62UerC8Ks_JlEzQqHisqGMN_UCkI4LJ9aEDEwUlVhlD57GgdQe-z0n-yagGpu6xa4fBwo0mX3h1lv-Gwb4akkHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820604715</pqid></control><display><type>article</type><title>Ultradilute Low-Dimensional Liquids</title><source>Recercat</source><source>American Physical Society Journals</source><creator>Petrov, D S ; Astrakharchik, G E</creator><creatorcontrib>Petrov, D S ; Astrakharchik, G E</creatorcontrib><description>We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a minimum at a finite density corresponding to a liquid state. We derive the Gross-Pitaevskii equation to describe droplets of such liquids and solve it analytically in the one-dimensional case.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.117.100401</identifier><identifier>PMID: 27636457</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Approximation ; Bogoliubov approximation ; Density ; Diffusion ; Droplets ; Energy use ; Física ; Física de fluids ; Gross-Pitaevskii equation ; Gross-Pitaevskii equations ; Liquids ; Líquids ; Mathematical analysis ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo technique ; Montecarlo, Mètode de ; Physics ; Ultradilute low-dimensional liquids ; Àrees temàtiques de la UPC</subject><ispartof>Physical review letters, 2016-09, Vol.117 (10), p.100401-100401, Article 100401</ispartof><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b33dcc73c98ddadb6b7e5262aa383eaa1a5153fd3b7a8621d4128e474afedcf63</citedby><cites>FETCH-LOGICAL-c473t-b33dcc73c98ddadb6b7e5262aa383eaa1a5153fd3b7a8621d4128e474afedcf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,26951,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27636457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01380145$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, D S</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><title>Ultradilute Low-Dimensional Liquids</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a minimum at a finite density corresponding to a liquid state. We derive the Gross-Pitaevskii equation to describe droplets of such liquids and solve it analytically in the one-dimensional case.</description><subject>Approximation</subject><subject>Bogoliubov approximation</subject><subject>Density</subject><subject>Diffusion</subject><subject>Droplets</subject><subject>Energy use</subject><subject>Física</subject><subject>Física de fluids</subject><subject>Gross-Pitaevskii equation</subject><subject>Gross-Pitaevskii equations</subject><subject>Liquids</subject><subject>Líquids</subject><subject>Mathematical analysis</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo technique</subject><subject>Montecarlo, Mètode de</subject><subject>Physics</subject><subject>Ultradilute low-dimensional liquids</subject><subject>Àrees temàtiques de la UPC</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNUU1LAzEQDaLYWv0LpeBFD6szSTZJj6V-VFhQxJ5DNsnSlW233exW-u_durV49DAM83hv5g2PkCHCHSKw-7fFLrz7beLrugXkHQJwwBPSR5DjSCLyU9IHYBiNAWSPXITwCQBIhTonPSoFEzyWfXI9L-rKuLxoaj9Kyq_oIV_6VcjLlSlGSb5pchcuyVlmiuCvDn1A5k-PH9NZlLw-v0wnSWS5ZHWUMuaslcyOlXPGpSKVPqaCGsMU88agiTFmmWOpNEpQdByp8lxyk3lnM8EG5LbbuzCFXlf50lQ7XZpczyaJ3mOATAHyeIstFzuuDY3Vlbe-sqb-YR-HfVGQVLdPI6Wt5qbTrKty0_hQ62UerC8Ks_JlEzQqHisqGMN_UCkI4LJ9aEDEwUlVhlD57GgdQe-z0n-yagGpu6xa4fBwo0mX3h1lv-Gwb4akkHw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Petrov, D S</creator><creator>Astrakharchik, G E</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope><scope>1XC</scope></search><sort><creationdate>20160901</creationdate><title>Ultradilute Low-Dimensional Liquids</title><author>Petrov, D S ; Astrakharchik, G E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b33dcc73c98ddadb6b7e5262aa383eaa1a5153fd3b7a8621d4128e474afedcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bogoliubov approximation</topic><topic>Density</topic><topic>Diffusion</topic><topic>Droplets</topic><topic>Energy use</topic><topic>Física</topic><topic>Física de fluids</topic><topic>Gross-Pitaevskii equation</topic><topic>Gross-Pitaevskii equations</topic><topic>Liquids</topic><topic>Líquids</topic><topic>Mathematical analysis</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo technique</topic><topic>Montecarlo, Mètode de</topic><topic>Physics</topic><topic>Ultradilute low-dimensional liquids</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrov, D S</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, D S</au><au>Astrakharchik, G E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultradilute Low-Dimensional Liquids</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>117</volume><issue>10</issue><spage>100401</spage><epage>100401</epage><pages>100401-100401</pages><artnum>100401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a minimum at a finite density corresponding to a liquid state. We derive the Gross-Pitaevskii equation to describe droplets of such liquids and solve it analytically in the one-dimensional case.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>27636457</pmid><doi>10.1103/PhysRevLett.117.100401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2016-09, Vol.117 (10), p.100401-100401, Article 100401 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01380145v1 |
source | Recercat; American Physical Society Journals |
subjects | Approximation Bogoliubov approximation Density Diffusion Droplets Energy use Física Física de fluids Gross-Pitaevskii equation Gross-Pitaevskii equations Liquids Líquids Mathematical analysis Monte Carlo method Monte Carlo methods Monte Carlo technique Montecarlo, Mètode de Physics Ultradilute low-dimensional liquids Àrees temàtiques de la UPC |
title | Ultradilute Low-Dimensional Liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultradilute%20Low-Dimensional%20Liquids&rft.jtitle=Physical%20review%20letters&rft.au=Petrov,%20D%20S&rft.date=2016-09-01&rft.volume=117&rft.issue=10&rft.spage=100401&rft.epage=100401&rft.pages=100401-100401&rft.artnum=100401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.117.100401&rft_dat=%3Cproquest_hal_p%3E1845826331%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820604715&rft_id=info:pmid/27636457&rfr_iscdi=true |