Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading

The present work employed in situ infrared thermography to investigate the thermal response and dissipative mechanisms of a dual-phase steel under ultrasonic tension-compression fatigue testing. A classical thermal response occurred for stress amplitudes below 247MPa but an abnormal thermal response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-11, Vol.677, p.97-105
Hauptverfasser: Torabian, Noushin, Favier, Véronique, Ziaei-Rad, Saeed, Dirrenberger, Justin, Adamski, Frédéric, Ranc, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 97
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 677
creator Torabian, Noushin
Favier, Véronique
Ziaei-Rad, Saeed
Dirrenberger, Justin
Adamski, Frédéric
Ranc, Nicolas
description The present work employed in situ infrared thermography to investigate the thermal response and dissipative mechanisms of a dual-phase steel under ultrasonic tension-compression fatigue testing. A classical thermal response occurred for stress amplitudes below 247MPa but an abnormal thermal response was observed for stress amplitudes above 247MPa, in that the temperature stabilized after a steep increase of up to ~350°C. The mean dissipated energy per cycle was estimated based on temperature measurements using the heat diffusion equation. The relationship between the mean dissipated energy per cycle and the stress amplitude was studied, and mechanisms related to the observed thermal response were discussed.
doi_str_mv 10.1016/j.msea.2016.09.025
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01377599v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316310899</els_id><sourcerecordid>1855367987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-e29e64d7800eabc411f9d02133cec041d0a1b1c94dfa5e40fb20ffe2bd7bab223</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRBILAt_gFMkLnBImLGdZC1xqUpLK1aih_ZsOfa465U3XuykEv-eLIt64MBpRk_vzcd7jL1HaBCw-7xvDoVMw5e-AdUAb1-wFW56UUslupdsBYpj3YISr9mbUvYAgBLaFft-v6N8MLHKVI5pLFQlX3296wAqN5tYH3dmwcpEFKt5dJSrOU7ZlDQGW3kzhceZqpiMC-PjW_bKm1jo3d-6Zg_XV_eXN_X2x7fby4ttbaVQU01cUSddvwEgM1iJ6JUDjkJYsiDRgcEBrZLOm5Yk-IGD98QH1w9m4Fys2afz3J2J-pjDweRfOpmgby62-oQBir5vlXrChfvxzD3m9HOmMulDKJZiNCOluWjctK3oerVYtWYf_qHu05zH5RONSvKeb_DPcn5m2ZxKyeSfL0DQpyz0Xp-y0KcsNCi9ZLGIvpxFtNjyFCjrYgONllzIZCftUvif_DebxZED</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942728122</pqid></control><display><type>article</type><title>Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Torabian, Noushin ; Favier, Véronique ; Ziaei-Rad, Saeed ; Dirrenberger, Justin ; Adamski, Frédéric ; Ranc, Nicolas</creator><creatorcontrib>Torabian, Noushin ; Favier, Véronique ; Ziaei-Rad, Saeed ; Dirrenberger, Justin ; Adamski, Frédéric ; Ranc, Nicolas</creatorcontrib><description>The present work employed in situ infrared thermography to investigate the thermal response and dissipative mechanisms of a dual-phase steel under ultrasonic tension-compression fatigue testing. A classical thermal response occurred for stress amplitudes below 247MPa but an abnormal thermal response was observed for stress amplitudes above 247MPa, in that the temperature stabilized after a steep increase of up to ~350°C. The mean dissipated energy per cycle was estimated based on temperature measurements using the heat diffusion equation. The relationship between the mean dissipated energy per cycle and the stress amplitude was studied, and mechanisms related to the observed thermal response were discussed.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.09.025</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amplitudes ; Chemical Sciences ; Compression tests ; Condensed Matter ; Diffusion rate ; Dislocations ; Dissipation ; Dissipative mechanisms ; Dual phase steels ; Dual-phase steel ; Duplex stainless steels ; Energy dissipation ; Engineering Sciences ; Fatigue tests ; Ferrite ; Infrared thermography ; Material chemistry ; Materials ; Materials and structures in mechanics ; Materials Science ; Mathematical analysis ; Mechanics ; Mechanics of materials ; Physics ; Solid mechanics ; Steel ; Stress state ; Stresses ; Structural mechanics ; Structural steels ; Temperature ; Thermal response ; Thermics ; Thermography ; Ultrasonic fatigue ; Ultrasonic testing ; Vibrations</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2016-11, Vol.677, p.97-105</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 20, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-e29e64d7800eabc411f9d02133cec041d0a1b1c94dfa5e40fb20ffe2bd7bab223</citedby><cites>FETCH-LOGICAL-c439t-e29e64d7800eabc411f9d02133cec041d0a1b1c94dfa5e40fb20ffe2bd7bab223</cites><orcidid>0000-0002-3964-305X ; 0000-0003-0805-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01377599$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Torabian, Noushin</creatorcontrib><creatorcontrib>Favier, Véronique</creatorcontrib><creatorcontrib>Ziaei-Rad, Saeed</creatorcontrib><creatorcontrib>Dirrenberger, Justin</creatorcontrib><creatorcontrib>Adamski, Frédéric</creatorcontrib><creatorcontrib>Ranc, Nicolas</creatorcontrib><title>Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The present work employed in situ infrared thermography to investigate the thermal response and dissipative mechanisms of a dual-phase steel under ultrasonic tension-compression fatigue testing. A classical thermal response occurred for stress amplitudes below 247MPa but an abnormal thermal response was observed for stress amplitudes above 247MPa, in that the temperature stabilized after a steep increase of up to ~350°C. The mean dissipated energy per cycle was estimated based on temperature measurements using the heat diffusion equation. The relationship between the mean dissipated energy per cycle and the stress amplitude was studied, and mechanisms related to the observed thermal response were discussed.</description><subject>Amplitudes</subject><subject>Chemical Sciences</subject><subject>Compression tests</subject><subject>Condensed Matter</subject><subject>Diffusion rate</subject><subject>Dislocations</subject><subject>Dissipation</subject><subject>Dissipative mechanisms</subject><subject>Dual phase steels</subject><subject>Dual-phase steel</subject><subject>Duplex stainless steels</subject><subject>Energy dissipation</subject><subject>Engineering Sciences</subject><subject>Fatigue tests</subject><subject>Ferrite</subject><subject>Infrared thermography</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Materials and structures in mechanics</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Steel</subject><subject>Stress state</subject><subject>Stresses</subject><subject>Structural mechanics</subject><subject>Structural steels</subject><subject>Temperature</subject><subject>Thermal response</subject><subject>Thermics</subject><subject>Thermography</subject><subject>Ultrasonic fatigue</subject><subject>Ultrasonic testing</subject><subject>Vibrations</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRBILAt_gFMkLnBImLGdZC1xqUpLK1aih_ZsOfa465U3XuykEv-eLIt64MBpRk_vzcd7jL1HaBCw-7xvDoVMw5e-AdUAb1-wFW56UUslupdsBYpj3YISr9mbUvYAgBLaFft-v6N8MLHKVI5pLFQlX3296wAqN5tYH3dmwcpEFKt5dJSrOU7ZlDQGW3kzhceZqpiMC-PjW_bKm1jo3d-6Zg_XV_eXN_X2x7fby4ttbaVQU01cUSddvwEgM1iJ6JUDjkJYsiDRgcEBrZLOm5Yk-IGD98QH1w9m4Fys2afz3J2J-pjDweRfOpmgby62-oQBir5vlXrChfvxzD3m9HOmMulDKJZiNCOluWjctK3oerVYtWYf_qHu05zH5RONSvKeb_DPcn5m2ZxKyeSfL0DQpyz0Xp-y0KcsNCi9ZLGIvpxFtNjyFCjrYgONllzIZCftUvif_DebxZED</recordid><startdate>20161120</startdate><enddate>20161120</enddate><creator>Torabian, Noushin</creator><creator>Favier, Véronique</creator><creator>Ziaei-Rad, Saeed</creator><creator>Dirrenberger, Justin</creator><creator>Adamski, Frédéric</creator><creator>Ranc, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3964-305X</orcidid><orcidid>https://orcid.org/0000-0003-0805-353X</orcidid></search><sort><creationdate>20161120</creationdate><title>Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading</title><author>Torabian, Noushin ; Favier, Véronique ; Ziaei-Rad, Saeed ; Dirrenberger, Justin ; Adamski, Frédéric ; Ranc, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-e29e64d7800eabc411f9d02133cec041d0a1b1c94dfa5e40fb20ffe2bd7bab223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitudes</topic><topic>Chemical Sciences</topic><topic>Compression tests</topic><topic>Condensed Matter</topic><topic>Diffusion rate</topic><topic>Dislocations</topic><topic>Dissipation</topic><topic>Dissipative mechanisms</topic><topic>Dual phase steels</topic><topic>Dual-phase steel</topic><topic>Duplex stainless steels</topic><topic>Energy dissipation</topic><topic>Engineering Sciences</topic><topic>Fatigue tests</topic><topic>Ferrite</topic><topic>Infrared thermography</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Materials and structures in mechanics</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Steel</topic><topic>Stress state</topic><topic>Stresses</topic><topic>Structural mechanics</topic><topic>Structural steels</topic><topic>Temperature</topic><topic>Thermal response</topic><topic>Thermics</topic><topic>Thermography</topic><topic>Ultrasonic fatigue</topic><topic>Ultrasonic testing</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torabian, Noushin</creatorcontrib><creatorcontrib>Favier, Véronique</creatorcontrib><creatorcontrib>Ziaei-Rad, Saeed</creatorcontrib><creatorcontrib>Dirrenberger, Justin</creatorcontrib><creatorcontrib>Adamski, Frédéric</creatorcontrib><creatorcontrib>Ranc, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torabian, Noushin</au><au>Favier, Véronique</au><au>Ziaei-Rad, Saeed</au><au>Dirrenberger, Justin</au><au>Adamski, Frédéric</au><au>Ranc, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2016-11-20</date><risdate>2016</risdate><volume>677</volume><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The present work employed in situ infrared thermography to investigate the thermal response and dissipative mechanisms of a dual-phase steel under ultrasonic tension-compression fatigue testing. A classical thermal response occurred for stress amplitudes below 247MPa but an abnormal thermal response was observed for stress amplitudes above 247MPa, in that the temperature stabilized after a steep increase of up to ~350°C. The mean dissipated energy per cycle was estimated based on temperature measurements using the heat diffusion equation. The relationship between the mean dissipated energy per cycle and the stress amplitude was studied, and mechanisms related to the observed thermal response were discussed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.09.025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3964-305X</orcidid><orcidid>https://orcid.org/0000-0003-0805-353X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-11, Vol.677, p.97-105
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_hal_01377599v1
source Elsevier ScienceDirect Journals Complete
subjects Amplitudes
Chemical Sciences
Compression tests
Condensed Matter
Diffusion rate
Dislocations
Dissipation
Dissipative mechanisms
Dual phase steels
Dual-phase steel
Duplex stainless steels
Energy dissipation
Engineering Sciences
Fatigue tests
Ferrite
Infrared thermography
Material chemistry
Materials
Materials and structures in mechanics
Materials Science
Mathematical analysis
Mechanics
Mechanics of materials
Physics
Solid mechanics
Steel
Stress state
Stresses
Structural mechanics
Structural steels
Temperature
Thermal response
Thermics
Thermography
Ultrasonic fatigue
Ultrasonic testing
Vibrations
title Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20response%20of%20DP600%20dual-phase%20steel%20under%20ultrasonic%20fatigue%20loading&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Torabian,%20Noushin&rft.date=2016-11-20&rft.volume=677&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.09.025&rft_dat=%3Cproquest_hal_p%3E1855367987%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942728122&rft_id=info:pmid/&rft_els_id=S0921509316310899&rfr_iscdi=true