High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget

The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2016-07, Vol.121 (7), p.5367-5392
Hauptverfasser: Estournel, Claude, Testor, Pierre, Damien, Pierre, D'Ortenzio, Fabrizio, Marsaleix, Patrick, Conan, Pascal, Kessouri, Faycal, Durrieu de Madron, Xavier, Coppola, Laurent, Lellouche, Jean‐Michel, Belamari, Sophie, Mortier, Laurent, Ulses, Caroline, Bouin, Marie‐Noelle, Prieur, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5392
container_issue 7
container_start_page 5367
container_title Journal of geophysical research. Oceans
container_volume 121
creator Estournel, Claude
Testor, Pierre
Damien, Pierre
D'Ortenzio, Fabrizio
Marsaleix, Patrick
Conan, Pascal
Kessouri, Faycal
Durrieu de Madron, Xavier
Coppola, Laurent
Lellouche, Jean‐Michel
Belamari, Sophie
Mortier, Laurent
Ulses, Caroline
Bouin, Marie‐Noelle
Prieur, Louis
description The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes. Key Points: Realistic simulation of winter convection and dense water formation Correction of initial and boundary conditions improves the simulation Sensitivity studies to air ‐ sea fluxes are characterized
doi_str_mv 10.1002/2016JC011935
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01373956v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815693483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1oICHNLQ8g6KWFbqORLMvqLSxttmFLSkjOQpbHuwpeKZXsLrnl1HOhb5gnqZwtofRQOpcZpG9m_p8pihOg74BSdsooVBdzCqC42CsOGVRqppiCF8-1FAfFcUq3NEcNdVmqw-L7wq3WJGIK_Ti44MkmtNg7vyKhIy36hGRrBoykC3FjngjnybBG4kMc1o8PP7aY8r8nn7F1uYjGo_GkHeM0ZOv81Jy1sceHnznx9-RLDBZTwkSMb0kztiscXhb7nekTHv_OR8XNxw_X88VseXn-aX62nJlSgZwBFbZUtkPDaGmNVDLbNYIrtNA0ZaM6ZFhbo1jdcVZ22FY1srqVthFSKORHxZvd3LXp9V10GxPvdTBOL86WenrLCiVXovoGmX29Y-9i-Dpml3rjksW-zw7DmDTUXFQgJKP_gYKoFC9rntFXf6G3YYw-m9aQZXNWVWLa_XZH2RhSitg9iwWqp3PrP8-dcb7Dt67H-3-y-uL8as6ydsl_AaW-q-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928326651</pqid></control><display><type>article</type><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</creator><creatorcontrib>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</creatorcontrib><description>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes. Key Points: Realistic simulation of winter convection and dense water formation Correction of initial and boundary conditions improves the simulation Sensitivity studies to air ‐ sea fluxes are characterized</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2016JC011935</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Additives ; Advection ; Air ; Air-sea flux ; air/sea interactions ; and mixing processes ; Autumn ; Boundary conditions ; Brackish ; Budgeting ; Budgets ; Buoyancy ; Computer simulation ; Convection ; Cruises ; Dense water ; Density stratification ; Destratification ; diffusion ; Evolution ; Fluxes ; Geophysics ; Heat ; Heat exchange ; Heat flux ; Heat transfer ; High resolution ; hydrodynamic modeling ; Initial conditions ; Latent heat ; Latent heat flux ; Marine ; Modelling ; Ocean circulation ; ocean observing systems ; Ocean temperature ; Ocean, Atmosphere ; Preconditioning ; Salt budget ; Sciences of the Universe ; Simulation ; Stratification ; Summer ; Surface boundary layer ; Surface layers ; Temperature (air-sea) ; turbulence ; Water ; Water masses ; Winter</subject><ispartof>Journal of geophysical research. Oceans, 2016-07, Vol.121 (7), p.5367-5392</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</cites><orcidid>0000-0002-8038-9479 ; 0000-0003-0473-1129 ; 0000-0003-0617-7336 ; 0000-0002-2879-9411 ; 0000-0002-0437-6561 ; 0000-0002-8752-9200 ; 0000-0002-4506-5209 ; 0000-0002-4543-6903 ; 0009-0009-6113-0048 ; 0000-0002-4599-1413 ; 0000-0003-3593-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JC011935$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JC011935$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://univ-perp.hal.science/hal-01373956$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estournel, Claude</creatorcontrib><creatorcontrib>Testor, Pierre</creatorcontrib><creatorcontrib>Damien, Pierre</creatorcontrib><creatorcontrib>D'Ortenzio, Fabrizio</creatorcontrib><creatorcontrib>Marsaleix, Patrick</creatorcontrib><creatorcontrib>Conan, Pascal</creatorcontrib><creatorcontrib>Kessouri, Faycal</creatorcontrib><creatorcontrib>Durrieu de Madron, Xavier</creatorcontrib><creatorcontrib>Coppola, Laurent</creatorcontrib><creatorcontrib>Lellouche, Jean‐Michel</creatorcontrib><creatorcontrib>Belamari, Sophie</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Ulses, Caroline</creatorcontrib><creatorcontrib>Bouin, Marie‐Noelle</creatorcontrib><creatorcontrib>Prieur, Louis</creatorcontrib><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><title>Journal of geophysical research. Oceans</title><description>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes. Key Points: Realistic simulation of winter convection and dense water formation Correction of initial and boundary conditions improves the simulation Sensitivity studies to air ‐ sea fluxes are characterized</description><subject>Additives</subject><subject>Advection</subject><subject>Air</subject><subject>Air-sea flux</subject><subject>air/sea interactions</subject><subject>and mixing processes</subject><subject>Autumn</subject><subject>Boundary conditions</subject><subject>Brackish</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>Buoyancy</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Cruises</subject><subject>Dense water</subject><subject>Density stratification</subject><subject>Destratification</subject><subject>diffusion</subject><subject>Evolution</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High resolution</subject><subject>hydrodynamic modeling</subject><subject>Initial conditions</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>Marine</subject><subject>Modelling</subject><subject>Ocean circulation</subject><subject>ocean observing systems</subject><subject>Ocean temperature</subject><subject>Ocean, Atmosphere</subject><subject>Preconditioning</subject><subject>Salt budget</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Stratification</subject><subject>Summer</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Temperature (air-sea)</subject><subject>turbulence</subject><subject>Water</subject><subject>Water masses</subject><subject>Winter</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1oICHNLQ8g6KWFbqORLMvqLSxttmFLSkjOQpbHuwpeKZXsLrnl1HOhb5gnqZwtofRQOpcZpG9m_p8pihOg74BSdsooVBdzCqC42CsOGVRqppiCF8-1FAfFcUq3NEcNdVmqw-L7wq3WJGIK_Ti44MkmtNg7vyKhIy36hGRrBoykC3FjngjnybBG4kMc1o8PP7aY8r8nn7F1uYjGo_GkHeM0ZOv81Jy1sceHnznx9-RLDBZTwkSMb0kztiscXhb7nekTHv_OR8XNxw_X88VseXn-aX62nJlSgZwBFbZUtkPDaGmNVDLbNYIrtNA0ZaM6ZFhbo1jdcVZ22FY1srqVthFSKORHxZvd3LXp9V10GxPvdTBOL86WenrLCiVXovoGmX29Y-9i-Dpml3rjksW-zw7DmDTUXFQgJKP_gYKoFC9rntFXf6G3YYw-m9aQZXNWVWLa_XZH2RhSitg9iwWqp3PrP8-dcb7Dt67H-3-y-uL8as6ydsl_AaW-q-0</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Estournel, Claude</creator><creator>Testor, Pierre</creator><creator>Damien, Pierre</creator><creator>D'Ortenzio, Fabrizio</creator><creator>Marsaleix, Patrick</creator><creator>Conan, Pascal</creator><creator>Kessouri, Faycal</creator><creator>Durrieu de Madron, Xavier</creator><creator>Coppola, Laurent</creator><creator>Lellouche, Jean‐Michel</creator><creator>Belamari, Sophie</creator><creator>Mortier, Laurent</creator><creator>Ulses, Caroline</creator><creator>Bouin, Marie‐Noelle</creator><creator>Prieur, Louis</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8038-9479</orcidid><orcidid>https://orcid.org/0000-0003-0473-1129</orcidid><orcidid>https://orcid.org/0000-0003-0617-7336</orcidid><orcidid>https://orcid.org/0000-0002-2879-9411</orcidid><orcidid>https://orcid.org/0000-0002-0437-6561</orcidid><orcidid>https://orcid.org/0000-0002-8752-9200</orcidid><orcidid>https://orcid.org/0000-0002-4506-5209</orcidid><orcidid>https://orcid.org/0000-0002-4543-6903</orcidid><orcidid>https://orcid.org/0009-0009-6113-0048</orcidid><orcidid>https://orcid.org/0000-0002-4599-1413</orcidid><orcidid>https://orcid.org/0000-0003-3593-7138</orcidid></search><sort><creationdate>201607</creationdate><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><author>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Advection</topic><topic>Air</topic><topic>Air-sea flux</topic><topic>air/sea interactions</topic><topic>and mixing processes</topic><topic>Autumn</topic><topic>Boundary conditions</topic><topic>Brackish</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>Buoyancy</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Cruises</topic><topic>Dense water</topic><topic>Density stratification</topic><topic>Destratification</topic><topic>diffusion</topic><topic>Evolution</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High resolution</topic><topic>hydrodynamic modeling</topic><topic>Initial conditions</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>Marine</topic><topic>Modelling</topic><topic>Ocean circulation</topic><topic>ocean observing systems</topic><topic>Ocean temperature</topic><topic>Ocean, Atmosphere</topic><topic>Preconditioning</topic><topic>Salt budget</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Stratification</topic><topic>Summer</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Temperature (air-sea)</topic><topic>turbulence</topic><topic>Water</topic><topic>Water masses</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estournel, Claude</creatorcontrib><creatorcontrib>Testor, Pierre</creatorcontrib><creatorcontrib>Damien, Pierre</creatorcontrib><creatorcontrib>D'Ortenzio, Fabrizio</creatorcontrib><creatorcontrib>Marsaleix, Patrick</creatorcontrib><creatorcontrib>Conan, Pascal</creatorcontrib><creatorcontrib>Kessouri, Faycal</creatorcontrib><creatorcontrib>Durrieu de Madron, Xavier</creatorcontrib><creatorcontrib>Coppola, Laurent</creatorcontrib><creatorcontrib>Lellouche, Jean‐Michel</creatorcontrib><creatorcontrib>Belamari, Sophie</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Ulses, Caroline</creatorcontrib><creatorcontrib>Bouin, Marie‐Noelle</creatorcontrib><creatorcontrib>Prieur, Louis</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estournel, Claude</au><au>Testor, Pierre</au><au>Damien, Pierre</au><au>D'Ortenzio, Fabrizio</au><au>Marsaleix, Patrick</au><au>Conan, Pascal</au><au>Kessouri, Faycal</au><au>Durrieu de Madron, Xavier</au><au>Coppola, Laurent</au><au>Lellouche, Jean‐Michel</au><au>Belamari, Sophie</au><au>Mortier, Laurent</au><au>Ulses, Caroline</au><au>Bouin, Marie‐Noelle</au><au>Prieur, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2016-07</date><risdate>2016</risdate><volume>121</volume><issue>7</issue><spage>5367</spage><epage>5392</epage><pages>5367-5392</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes. Key Points: Realistic simulation of winter convection and dense water formation Correction of initial and boundary conditions improves the simulation Sensitivity studies to air ‐ sea fluxes are characterized</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JC011935</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8038-9479</orcidid><orcidid>https://orcid.org/0000-0003-0473-1129</orcidid><orcidid>https://orcid.org/0000-0003-0617-7336</orcidid><orcidid>https://orcid.org/0000-0002-2879-9411</orcidid><orcidid>https://orcid.org/0000-0002-0437-6561</orcidid><orcidid>https://orcid.org/0000-0002-8752-9200</orcidid><orcidid>https://orcid.org/0000-0002-4506-5209</orcidid><orcidid>https://orcid.org/0000-0002-4543-6903</orcidid><orcidid>https://orcid.org/0009-0009-6113-0048</orcidid><orcidid>https://orcid.org/0000-0002-4599-1413</orcidid><orcidid>https://orcid.org/0000-0003-3593-7138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2016-07, Vol.121 (7), p.5367-5392
issn 2169-9275
2169-9291
language eng
recordid cdi_hal_primary_oai_HAL_hal_01373956v1
source Wiley Online Library Journals; Alma/SFX Local Collection
subjects Additives
Advection
Air
Air-sea flux
air/sea interactions
and mixing processes
Autumn
Boundary conditions
Brackish
Budgeting
Budgets
Buoyancy
Computer simulation
Convection
Cruises
Dense water
Density stratification
Destratification
diffusion
Evolution
Fluxes
Geophysics
Heat
Heat exchange
Heat flux
Heat transfer
High resolution
hydrodynamic modeling
Initial conditions
Latent heat
Latent heat flux
Marine
Modelling
Ocean circulation
ocean observing systems
Ocean temperature
Ocean, Atmosphere
Preconditioning
Salt budget
Sciences of the Universe
Simulation
Stratification
Summer
Surface boundary layer
Surface layers
Temperature (air-sea)
turbulence
Water
Water masses
Winter
title High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20modeling%20of%20dense%20water%20formation%20in%20the%20north%E2%80%90western%20Mediterranean%20during%20winter%202012%E2%80%932013:%20Processes%20and%20budget&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Estournel,%20Claude&rft.date=2016-07&rft.volume=121&rft.issue=7&rft.spage=5367&rft.epage=5392&rft.pages=5367-5392&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2016JC011935&rft_dat=%3Cproquest_hal_p%3E1815693483%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928326651&rft_id=info:pmid/&rfr_iscdi=true