High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget
The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvem...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Oceans 2016-07, Vol.121 (7), p.5367-5392 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5392 |
---|---|
container_issue | 7 |
container_start_page | 5367 |
container_title | Journal of geophysical research. Oceans |
container_volume | 121 |
creator | Estournel, Claude Testor, Pierre Damien, Pierre D'Ortenzio, Fabrizio Marsaleix, Patrick Conan, Pascal Kessouri, Faycal Durrieu de Madron, Xavier Coppola, Laurent Lellouche, Jean‐Michel Belamari, Sophie Mortier, Laurent Ulses, Caroline Bouin, Marie‐Noelle Prieur, Louis |
description | The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Key Points:
Realistic simulation of winter convection and dense water formation
Correction of initial and boundary conditions improves the simulation
Sensitivity studies to air ‐ sea fluxes are characterized |
doi_str_mv | 10.1002/2016JC011935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01373956v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815693483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1oICHNLQ8g6KWFbqORLMvqLSxttmFLSkjOQpbHuwpeKZXsLrnl1HOhb5gnqZwtofRQOpcZpG9m_p8pihOg74BSdsooVBdzCqC42CsOGVRqppiCF8-1FAfFcUq3NEcNdVmqw-L7wq3WJGIK_Ti44MkmtNg7vyKhIy36hGRrBoykC3FjngjnybBG4kMc1o8PP7aY8r8nn7F1uYjGo_GkHeM0ZOv81Jy1sceHnznx9-RLDBZTwkSMb0kztiscXhb7nekTHv_OR8XNxw_X88VseXn-aX62nJlSgZwBFbZUtkPDaGmNVDLbNYIrtNA0ZaM6ZFhbo1jdcVZ22FY1srqVthFSKORHxZvd3LXp9V10GxPvdTBOL86WenrLCiVXovoGmX29Y-9i-Dpml3rjksW-zw7DmDTUXFQgJKP_gYKoFC9rntFXf6G3YYw-m9aQZXNWVWLa_XZH2RhSitg9iwWqp3PrP8-dcb7Dt67H-3-y-uL8as6ydsl_AaW-q-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928326651</pqid></control><display><type>article</type><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</creator><creatorcontrib>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</creatorcontrib><description>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Key Points:
Realistic simulation of winter convection and dense water formation
Correction of initial and boundary conditions improves the simulation
Sensitivity studies to air ‐ sea fluxes are characterized</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2016JC011935</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Additives ; Advection ; Air ; Air-sea flux ; air/sea interactions ; and mixing processes ; Autumn ; Boundary conditions ; Brackish ; Budgeting ; Budgets ; Buoyancy ; Computer simulation ; Convection ; Cruises ; Dense water ; Density stratification ; Destratification ; diffusion ; Evolution ; Fluxes ; Geophysics ; Heat ; Heat exchange ; Heat flux ; Heat transfer ; High resolution ; hydrodynamic modeling ; Initial conditions ; Latent heat ; Latent heat flux ; Marine ; Modelling ; Ocean circulation ; ocean observing systems ; Ocean temperature ; Ocean, Atmosphere ; Preconditioning ; Salt budget ; Sciences of the Universe ; Simulation ; Stratification ; Summer ; Surface boundary layer ; Surface layers ; Temperature (air-sea) ; turbulence ; Water ; Water masses ; Winter</subject><ispartof>Journal of geophysical research. Oceans, 2016-07, Vol.121 (7), p.5367-5392</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</cites><orcidid>0000-0002-8038-9479 ; 0000-0003-0473-1129 ; 0000-0003-0617-7336 ; 0000-0002-2879-9411 ; 0000-0002-0437-6561 ; 0000-0002-8752-9200 ; 0000-0002-4506-5209 ; 0000-0002-4543-6903 ; 0009-0009-6113-0048 ; 0000-0002-4599-1413 ; 0000-0003-3593-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JC011935$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JC011935$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://univ-perp.hal.science/hal-01373956$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estournel, Claude</creatorcontrib><creatorcontrib>Testor, Pierre</creatorcontrib><creatorcontrib>Damien, Pierre</creatorcontrib><creatorcontrib>D'Ortenzio, Fabrizio</creatorcontrib><creatorcontrib>Marsaleix, Patrick</creatorcontrib><creatorcontrib>Conan, Pascal</creatorcontrib><creatorcontrib>Kessouri, Faycal</creatorcontrib><creatorcontrib>Durrieu de Madron, Xavier</creatorcontrib><creatorcontrib>Coppola, Laurent</creatorcontrib><creatorcontrib>Lellouche, Jean‐Michel</creatorcontrib><creatorcontrib>Belamari, Sophie</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Ulses, Caroline</creatorcontrib><creatorcontrib>Bouin, Marie‐Noelle</creatorcontrib><creatorcontrib>Prieur, Louis</creatorcontrib><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><title>Journal of geophysical research. Oceans</title><description>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Key Points:
Realistic simulation of winter convection and dense water formation
Correction of initial and boundary conditions improves the simulation
Sensitivity studies to air ‐ sea fluxes are characterized</description><subject>Additives</subject><subject>Advection</subject><subject>Air</subject><subject>Air-sea flux</subject><subject>air/sea interactions</subject><subject>and mixing processes</subject><subject>Autumn</subject><subject>Boundary conditions</subject><subject>Brackish</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>Buoyancy</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Cruises</subject><subject>Dense water</subject><subject>Density stratification</subject><subject>Destratification</subject><subject>diffusion</subject><subject>Evolution</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High resolution</subject><subject>hydrodynamic modeling</subject><subject>Initial conditions</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>Marine</subject><subject>Modelling</subject><subject>Ocean circulation</subject><subject>ocean observing systems</subject><subject>Ocean temperature</subject><subject>Ocean, Atmosphere</subject><subject>Preconditioning</subject><subject>Salt budget</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Stratification</subject><subject>Summer</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Temperature (air-sea)</subject><subject>turbulence</subject><subject>Water</subject><subject>Water masses</subject><subject>Winter</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1oICHNLQ8g6KWFbqORLMvqLSxttmFLSkjOQpbHuwpeKZXsLrnl1HOhb5gnqZwtofRQOpcZpG9m_p8pihOg74BSdsooVBdzCqC42CsOGVRqppiCF8-1FAfFcUq3NEcNdVmqw-L7wq3WJGIK_Ti44MkmtNg7vyKhIy36hGRrBoykC3FjngjnybBG4kMc1o8PP7aY8r8nn7F1uYjGo_GkHeM0ZOv81Jy1sceHnznx9-RLDBZTwkSMb0kztiscXhb7nekTHv_OR8XNxw_X88VseXn-aX62nJlSgZwBFbZUtkPDaGmNVDLbNYIrtNA0ZaM6ZFhbo1jdcVZ22FY1srqVthFSKORHxZvd3LXp9V10GxPvdTBOL86WenrLCiVXovoGmX29Y-9i-Dpml3rjksW-zw7DmDTUXFQgJKP_gYKoFC9rntFXf6G3YYw-m9aQZXNWVWLa_XZH2RhSitg9iwWqp3PrP8-dcb7Dt67H-3-y-uL8as6ydsl_AaW-q-0</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Estournel, Claude</creator><creator>Testor, Pierre</creator><creator>Damien, Pierre</creator><creator>D'Ortenzio, Fabrizio</creator><creator>Marsaleix, Patrick</creator><creator>Conan, Pascal</creator><creator>Kessouri, Faycal</creator><creator>Durrieu de Madron, Xavier</creator><creator>Coppola, Laurent</creator><creator>Lellouche, Jean‐Michel</creator><creator>Belamari, Sophie</creator><creator>Mortier, Laurent</creator><creator>Ulses, Caroline</creator><creator>Bouin, Marie‐Noelle</creator><creator>Prieur, Louis</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8038-9479</orcidid><orcidid>https://orcid.org/0000-0003-0473-1129</orcidid><orcidid>https://orcid.org/0000-0003-0617-7336</orcidid><orcidid>https://orcid.org/0000-0002-2879-9411</orcidid><orcidid>https://orcid.org/0000-0002-0437-6561</orcidid><orcidid>https://orcid.org/0000-0002-8752-9200</orcidid><orcidid>https://orcid.org/0000-0002-4506-5209</orcidid><orcidid>https://orcid.org/0000-0002-4543-6903</orcidid><orcidid>https://orcid.org/0009-0009-6113-0048</orcidid><orcidid>https://orcid.org/0000-0002-4599-1413</orcidid><orcidid>https://orcid.org/0000-0003-3593-7138</orcidid></search><sort><creationdate>201607</creationdate><title>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</title><author>Estournel, Claude ; Testor, Pierre ; Damien, Pierre ; D'Ortenzio, Fabrizio ; Marsaleix, Patrick ; Conan, Pascal ; Kessouri, Faycal ; Durrieu de Madron, Xavier ; Coppola, Laurent ; Lellouche, Jean‐Michel ; Belamari, Sophie ; Mortier, Laurent ; Ulses, Caroline ; Bouin, Marie‐Noelle ; Prieur, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4917-105c49cfea204ca797119a539ec1bb4b9fe2e8ca928f324fed68e28d7cb5759e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Advection</topic><topic>Air</topic><topic>Air-sea flux</topic><topic>air/sea interactions</topic><topic>and mixing processes</topic><topic>Autumn</topic><topic>Boundary conditions</topic><topic>Brackish</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>Buoyancy</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Cruises</topic><topic>Dense water</topic><topic>Density stratification</topic><topic>Destratification</topic><topic>diffusion</topic><topic>Evolution</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High resolution</topic><topic>hydrodynamic modeling</topic><topic>Initial conditions</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>Marine</topic><topic>Modelling</topic><topic>Ocean circulation</topic><topic>ocean observing systems</topic><topic>Ocean temperature</topic><topic>Ocean, Atmosphere</topic><topic>Preconditioning</topic><topic>Salt budget</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Stratification</topic><topic>Summer</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Temperature (air-sea)</topic><topic>turbulence</topic><topic>Water</topic><topic>Water masses</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estournel, Claude</creatorcontrib><creatorcontrib>Testor, Pierre</creatorcontrib><creatorcontrib>Damien, Pierre</creatorcontrib><creatorcontrib>D'Ortenzio, Fabrizio</creatorcontrib><creatorcontrib>Marsaleix, Patrick</creatorcontrib><creatorcontrib>Conan, Pascal</creatorcontrib><creatorcontrib>Kessouri, Faycal</creatorcontrib><creatorcontrib>Durrieu de Madron, Xavier</creatorcontrib><creatorcontrib>Coppola, Laurent</creatorcontrib><creatorcontrib>Lellouche, Jean‐Michel</creatorcontrib><creatorcontrib>Belamari, Sophie</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Ulses, Caroline</creatorcontrib><creatorcontrib>Bouin, Marie‐Noelle</creatorcontrib><creatorcontrib>Prieur, Louis</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estournel, Claude</au><au>Testor, Pierre</au><au>Damien, Pierre</au><au>D'Ortenzio, Fabrizio</au><au>Marsaleix, Patrick</au><au>Conan, Pascal</au><au>Kessouri, Faycal</au><au>Durrieu de Madron, Xavier</au><au>Coppola, Laurent</au><au>Lellouche, Jean‐Michel</au><au>Belamari, Sophie</au><au>Mortier, Laurent</au><au>Ulses, Caroline</au><au>Bouin, Marie‐Noelle</au><au>Prieur, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2016-07</date><risdate>2016</risdate><volume>121</volume><issue>7</issue><spage>5367</spage><epage>5392</epage><pages>5367-5392</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>The evolution of the stratification of the north‐western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air ‐ sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time‐integrated buoyancy budget over the autumn ‐ winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m−3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Key Points:
Realistic simulation of winter convection and dense water formation
Correction of initial and boundary conditions improves the simulation
Sensitivity studies to air ‐ sea fluxes are characterized</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JC011935</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8038-9479</orcidid><orcidid>https://orcid.org/0000-0003-0473-1129</orcidid><orcidid>https://orcid.org/0000-0003-0617-7336</orcidid><orcidid>https://orcid.org/0000-0002-2879-9411</orcidid><orcidid>https://orcid.org/0000-0002-0437-6561</orcidid><orcidid>https://orcid.org/0000-0002-8752-9200</orcidid><orcidid>https://orcid.org/0000-0002-4506-5209</orcidid><orcidid>https://orcid.org/0000-0002-4543-6903</orcidid><orcidid>https://orcid.org/0009-0009-6113-0048</orcidid><orcidid>https://orcid.org/0000-0002-4599-1413</orcidid><orcidid>https://orcid.org/0000-0003-3593-7138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9275 |
ispartof | Journal of geophysical research. Oceans, 2016-07, Vol.121 (7), p.5367-5392 |
issn | 2169-9275 2169-9291 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01373956v1 |
source | Wiley Online Library Journals; Alma/SFX Local Collection |
subjects | Additives Advection Air Air-sea flux air/sea interactions and mixing processes Autumn Boundary conditions Brackish Budgeting Budgets Buoyancy Computer simulation Convection Cruises Dense water Density stratification Destratification diffusion Evolution Fluxes Geophysics Heat Heat exchange Heat flux Heat transfer High resolution hydrodynamic modeling Initial conditions Latent heat Latent heat flux Marine Modelling Ocean circulation ocean observing systems Ocean temperature Ocean, Atmosphere Preconditioning Salt budget Sciences of the Universe Simulation Stratification Summer Surface boundary layer Surface layers Temperature (air-sea) turbulence Water Water masses Winter |
title | High resolution modeling of dense water formation in the north‐western Mediterranean during winter 2012–2013: Processes and budget |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20modeling%20of%20dense%20water%20formation%20in%20the%20north%E2%80%90western%20Mediterranean%20during%20winter%202012%E2%80%932013:%20Processes%20and%20budget&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Estournel,%20Claude&rft.date=2016-07&rft.volume=121&rft.issue=7&rft.spage=5367&rft.epage=5392&rft.pages=5367-5392&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2016JC011935&rft_dat=%3Cproquest_hal_p%3E1815693483%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928326651&rft_id=info:pmid/&rfr_iscdi=true |