3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)

Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basin research 2018-02, Vol.30 (S1), p.101-123
Hauptverfasser: Bruneau, Benjamin, Chauveau, Benoit, Duarte, Luis Vitor, Desaubliaux, Guy, Moretti, Isabelle, Baudin, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue S1
container_start_page 101
container_title Basin research
container_volume 30
creator Bruneau, Benjamin
Chauveau, Benoit
Duarte, Luis Vitor
Desaubliaux, Guy
Moretti, Isabelle
Baudin, François
description Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.
doi_str_mv 10.1111/bre.12210
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01371582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987322563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1EJULhwBtY4kIP287Y3V0vt7a0FBSpCPXAzZo4s6krZx3sXSBv0MeuQ_hz6vgwGvv3ffLoE-INwjGWOlkkPkalEJ6JGeqmrhRi-1zMoKuhgg6_vRAvc74HAFMjzsSD_iCHac3JOwpyHZccgh9WMvZyTckPLGNa0eBdGceRk1z6PCa_mEYfh_eSf9F6E3iHj3csmVLYys9TopyLJPP3iQfH-e_7fMp-LG40yHPKfpDvvsQ0TisKR6_EQU8h8-s__VDcXl3eXlxX85uPny7O5hXp-hSqJZjWMS9aaMAph44Bm1PQ5ZBD0zP1HTndddy3SveqMaY1NREs0UDX6kNxtLe9o2A3yZcltzaSt9dnc7u7A9Qt1kb9wMK-3bObFMsiebT3cUpD-Z3FzrRaqbrR_x1dijkn7v_ZIthdJrZkYn9nUtiTPfvTB94-Ddrzr5d7xSMqho22</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987322563</pqid></control><display><type>article</type><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</creator><creatorcontrib>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</creatorcontrib><description>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</description><identifier>ISSN: 0950-091X</identifier><identifier>EISSN: 1365-2117</identifier><identifier>DOI: 10.1111/bre.12210</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Basin geometry ; Basins ; Computer simulation ; Depth ; Earth Sciences ; Geochemistry ; Geology ; Heterogeneity ; Jurassic ; Lithology ; Mathematical models ; Mineralogy ; Modelling ; Organic carbon ; Organic matter ; Outcrops ; Oxygen ; Oxygen content ; Parameters ; Productivity ; Rocks ; Sciences of the Universe ; Sedimentation ; Sedimentation &amp; deposition ; Sediments ; Stratigraphy ; Temperature (air-sea) ; Thickness ; Three dimensional models</subject><ispartof>Basin research, 2018-02, Vol.30 (S1), p.101-123</ispartof><rights>2016 The Authors. Basin Research © 2016 John Wiley &amp; Sons Ltd, European Association of Geoscientists &amp; Engineers and International Association of Sedimentologists</rights><rights>Basin Research © 2018 John Wiley &amp; Sons Ltd, European Association of Geoscientists &amp; Engineers and International Association of Sedimentologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</citedby><cites>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</cites><orcidid>0000-0003-4215-4764 ; 0000-0003-3180-459X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbre.12210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbre.12210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01371582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruneau, Benjamin</creatorcontrib><creatorcontrib>Chauveau, Benoit</creatorcontrib><creatorcontrib>Duarte, Luis Vitor</creatorcontrib><creatorcontrib>Desaubliaux, Guy</creatorcontrib><creatorcontrib>Moretti, Isabelle</creatorcontrib><creatorcontrib>Baudin, François</creatorcontrib><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><title>Basin research</title><description>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</description><subject>Basin geometry</subject><subject>Basins</subject><subject>Computer simulation</subject><subject>Depth</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heterogeneity</subject><subject>Jurassic</subject><subject>Lithology</subject><subject>Mathematical models</subject><subject>Mineralogy</subject><subject>Modelling</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Outcrops</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Parameters</subject><subject>Productivity</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Sedimentation</subject><subject>Sedimentation &amp; deposition</subject><subject>Sediments</subject><subject>Stratigraphy</subject><subject>Temperature (air-sea)</subject><subject>Thickness</subject><subject>Three dimensional models</subject><issn>0950-091X</issn><issn>1365-2117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1EJULhwBtY4kIP287Y3V0vt7a0FBSpCPXAzZo4s6krZx3sXSBv0MeuQ_hz6vgwGvv3ffLoE-INwjGWOlkkPkalEJ6JGeqmrhRi-1zMoKuhgg6_vRAvc74HAFMjzsSD_iCHac3JOwpyHZccgh9WMvZyTckPLGNa0eBdGceRk1z6PCa_mEYfh_eSf9F6E3iHj3csmVLYys9TopyLJPP3iQfH-e_7fMp-LG40yHPKfpDvvsQ0TisKR6_EQU8h8-s__VDcXl3eXlxX85uPny7O5hXp-hSqJZjWMS9aaMAph44Bm1PQ5ZBD0zP1HTndddy3SveqMaY1NREs0UDX6kNxtLe9o2A3yZcltzaSt9dnc7u7A9Qt1kb9wMK-3bObFMsiebT3cUpD-Z3FzrRaqbrR_x1dijkn7v_ZIthdJrZkYn9nUtiTPfvTB94-Ddrzr5d7xSMqho22</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Bruneau, Benjamin</creator><creator>Chauveau, Benoit</creator><creator>Duarte, Luis Vitor</creator><creator>Desaubliaux, Guy</creator><creator>Moretti, Isabelle</creator><creator>Baudin, François</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4215-4764</orcidid><orcidid>https://orcid.org/0000-0003-3180-459X</orcidid></search><sort><creationdate>201802</creationdate><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><author>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basin geometry</topic><topic>Basins</topic><topic>Computer simulation</topic><topic>Depth</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heterogeneity</topic><topic>Jurassic</topic><topic>Lithology</topic><topic>Mathematical models</topic><topic>Mineralogy</topic><topic>Modelling</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Outcrops</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Parameters</topic><topic>Productivity</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Sedimentation</topic><topic>Sedimentation &amp; deposition</topic><topic>Sediments</topic><topic>Stratigraphy</topic><topic>Temperature (air-sea)</topic><topic>Thickness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruneau, Benjamin</creatorcontrib><creatorcontrib>Chauveau, Benoit</creatorcontrib><creatorcontrib>Duarte, Luis Vitor</creatorcontrib><creatorcontrib>Desaubliaux, Guy</creatorcontrib><creatorcontrib>Moretti, Isabelle</creatorcontrib><creatorcontrib>Baudin, François</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Basin research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruneau, Benjamin</au><au>Chauveau, Benoit</au><au>Duarte, Luis Vitor</au><au>Desaubliaux, Guy</au><au>Moretti, Isabelle</au><au>Baudin, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</atitle><jtitle>Basin research</jtitle><date>2018-02</date><risdate>2018</risdate><volume>30</volume><issue>S1</issue><spage>101</spage><epage>123</epage><pages>101-123</pages><issn>0950-091X</issn><eissn>1365-2117</eissn><abstract>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/bre.12210</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4215-4764</orcidid><orcidid>https://orcid.org/0000-0003-3180-459X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-091X
ispartof Basin research, 2018-02, Vol.30 (S1), p.101-123
issn 0950-091X
1365-2117
language eng
recordid cdi_hal_primary_oai_HAL_hal_01371582v1
source Wiley Online Library Journals Frontfile Complete
subjects Basin geometry
Basins
Computer simulation
Depth
Earth Sciences
Geochemistry
Geology
Heterogeneity
Jurassic
Lithology
Mathematical models
Mineralogy
Modelling
Organic carbon
Organic matter
Outcrops
Oxygen
Oxygen content
Parameters
Productivity
Rocks
Sciences of the Universe
Sedimentation
Sedimentation & deposition
Sediments
Stratigraphy
Temperature (air-sea)
Thickness
Three dimensional models
title 3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20numerical%20modelling%20of%20marine%20organic%20matter%20distribution:%20example%20of%20the%20early%20Jurassic%20sequences%20of%20the%20Lusitanian%20Basin%20(Portugal)&rft.jtitle=Basin%20research&rft.au=Bruneau,%20Benjamin&rft.date=2018-02&rft.volume=30&rft.issue=S1&rft.spage=101&rft.epage=123&rft.pages=101-123&rft.issn=0950-091X&rft.eissn=1365-2117&rft_id=info:doi/10.1111/bre.12210&rft_dat=%3Cproquest_hal_p%3E1987322563%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987322563&rft_id=info:pmid/&rfr_iscdi=true