3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)
Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as...
Gespeichert in:
Veröffentlicht in: | Basin research 2018-02, Vol.30 (S1), p.101-123 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | S1 |
container_start_page | 101 |
container_title | Basin research |
container_volume | 30 |
creator | Bruneau, Benjamin Chauveau, Benoit Duarte, Luis Vitor Desaubliaux, Guy Moretti, Isabelle Baudin, François |
description | Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration. |
doi_str_mv | 10.1111/bre.12210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01371582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987322563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1EJULhwBtY4kIP287Y3V0vt7a0FBSpCPXAzZo4s6krZx3sXSBv0MeuQ_hz6vgwGvv3ffLoE-INwjGWOlkkPkalEJ6JGeqmrhRi-1zMoKuhgg6_vRAvc74HAFMjzsSD_iCHac3JOwpyHZccgh9WMvZyTckPLGNa0eBdGceRk1z6PCa_mEYfh_eSf9F6E3iHj3csmVLYys9TopyLJPP3iQfH-e_7fMp-LG40yHPKfpDvvsQ0TisKR6_EQU8h8-s__VDcXl3eXlxX85uPny7O5hXp-hSqJZjWMS9aaMAph44Bm1PQ5ZBD0zP1HTndddy3SveqMaY1NREs0UDX6kNxtLe9o2A3yZcltzaSt9dnc7u7A9Qt1kb9wMK-3bObFMsiebT3cUpD-Z3FzrRaqbrR_x1dijkn7v_ZIthdJrZkYn9nUtiTPfvTB94-Ddrzr5d7xSMqho22</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987322563</pqid></control><display><type>article</type><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</creator><creatorcontrib>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</creatorcontrib><description>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</description><identifier>ISSN: 0950-091X</identifier><identifier>EISSN: 1365-2117</identifier><identifier>DOI: 10.1111/bre.12210</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Basin geometry ; Basins ; Computer simulation ; Depth ; Earth Sciences ; Geochemistry ; Geology ; Heterogeneity ; Jurassic ; Lithology ; Mathematical models ; Mineralogy ; Modelling ; Organic carbon ; Organic matter ; Outcrops ; Oxygen ; Oxygen content ; Parameters ; Productivity ; Rocks ; Sciences of the Universe ; Sedimentation ; Sedimentation & deposition ; Sediments ; Stratigraphy ; Temperature (air-sea) ; Thickness ; Three dimensional models</subject><ispartof>Basin research, 2018-02, Vol.30 (S1), p.101-123</ispartof><rights>2016 The Authors. Basin Research © 2016 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists</rights><rights>Basin Research © 2018 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</citedby><cites>FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</cites><orcidid>0000-0003-4215-4764 ; 0000-0003-3180-459X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbre.12210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbre.12210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01371582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruneau, Benjamin</creatorcontrib><creatorcontrib>Chauveau, Benoit</creatorcontrib><creatorcontrib>Duarte, Luis Vitor</creatorcontrib><creatorcontrib>Desaubliaux, Guy</creatorcontrib><creatorcontrib>Moretti, Isabelle</creatorcontrib><creatorcontrib>Baudin, François</creatorcontrib><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><title>Basin research</title><description>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</description><subject>Basin geometry</subject><subject>Basins</subject><subject>Computer simulation</subject><subject>Depth</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heterogeneity</subject><subject>Jurassic</subject><subject>Lithology</subject><subject>Mathematical models</subject><subject>Mineralogy</subject><subject>Modelling</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Outcrops</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Parameters</subject><subject>Productivity</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Sedimentation</subject><subject>Sedimentation & deposition</subject><subject>Sediments</subject><subject>Stratigraphy</subject><subject>Temperature (air-sea)</subject><subject>Thickness</subject><subject>Three dimensional models</subject><issn>0950-091X</issn><issn>1365-2117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1EJULhwBtY4kIP287Y3V0vt7a0FBSpCPXAzZo4s6krZx3sXSBv0MeuQ_hz6vgwGvv3ffLoE-INwjGWOlkkPkalEJ6JGeqmrhRi-1zMoKuhgg6_vRAvc74HAFMjzsSD_iCHac3JOwpyHZccgh9WMvZyTckPLGNa0eBdGceRk1z6PCa_mEYfh_eSf9F6E3iHj3csmVLYys9TopyLJPP3iQfH-e_7fMp-LG40yHPKfpDvvsQ0TisKR6_EQU8h8-s__VDcXl3eXlxX85uPny7O5hXp-hSqJZjWMS9aaMAph44Bm1PQ5ZBD0zP1HTndddy3SveqMaY1NREs0UDX6kNxtLe9o2A3yZcltzaSt9dnc7u7A9Qt1kb9wMK-3bObFMsiebT3cUpD-Z3FzrRaqbrR_x1dijkn7v_ZIthdJrZkYn9nUtiTPfvTB94-Ddrzr5d7xSMqho22</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Bruneau, Benjamin</creator><creator>Chauveau, Benoit</creator><creator>Duarte, Luis Vitor</creator><creator>Desaubliaux, Guy</creator><creator>Moretti, Isabelle</creator><creator>Baudin, François</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4215-4764</orcidid><orcidid>https://orcid.org/0000-0003-3180-459X</orcidid></search><sort><creationdate>201802</creationdate><title>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</title><author>Bruneau, Benjamin ; Chauveau, Benoit ; Duarte, Luis Vitor ; Desaubliaux, Guy ; Moretti, Isabelle ; Baudin, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3540-d087ceeb7060c2c1ce016403030ac18feaf9ac399ef723f2688785aa0d180973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basin geometry</topic><topic>Basins</topic><topic>Computer simulation</topic><topic>Depth</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heterogeneity</topic><topic>Jurassic</topic><topic>Lithology</topic><topic>Mathematical models</topic><topic>Mineralogy</topic><topic>Modelling</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Outcrops</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Parameters</topic><topic>Productivity</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Sedimentation</topic><topic>Sedimentation & deposition</topic><topic>Sediments</topic><topic>Stratigraphy</topic><topic>Temperature (air-sea)</topic><topic>Thickness</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruneau, Benjamin</creatorcontrib><creatorcontrib>Chauveau, Benoit</creatorcontrib><creatorcontrib>Duarte, Luis Vitor</creatorcontrib><creatorcontrib>Desaubliaux, Guy</creatorcontrib><creatorcontrib>Moretti, Isabelle</creatorcontrib><creatorcontrib>Baudin, François</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Basin research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruneau, Benjamin</au><au>Chauveau, Benoit</au><au>Duarte, Luis Vitor</au><au>Desaubliaux, Guy</au><au>Moretti, Isabelle</au><au>Baudin, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal)</atitle><jtitle>Basin research</jtitle><date>2018-02</date><risdate>2018</risdate><volume>30</volume><issue>S1</issue><spage>101</spage><epage>123</epage><pages>101-123</pages><issn>0950-091X</issn><eissn>1365-2117</eissn><abstract>Due to the multiple controlling factors involved, it is a challenging task to identify and quantify the processes influencing the distribution and heterogeneity of marine organic‐rich rocks. To improve our understanding of these deposits, we model their burial history and stratigraphic evolution as well as processes linked to marine organic matter history throughout the Lower Jurassic in of the Northern Lusitanian Basin (Western Iberian Margin). This 15‐Ma‐long interval is modelled using 100‐kyr time steps to simulate lithologies and organic matter heterogeneity as layers with a thickness of 2–5 m, depending on the sedimentation rate in the basin. The model is calibrated by well and outcrop data which provide structural and biostratigraphic constraints, as well as information on the depositional facies and geochemistry of the sediments. The results show that the presence of organic‐rich intervals is linked to first‐order variations in the basin geometry and sedimentation rates. Without considering any variation of primary productivity or oxygen content in surface sea waters, the parameters of basin geometry and sedimentation rate are sufficient to predict the main characteristics of source rocks, i.e. their occurrence, thickness and mineralogy at the basin scale. However, to fit the measured organic carbon contents, we need to take account of other parameters such as variations of primary productivity or changes in dissolved oxygen concentration.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/bre.12210</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4215-4764</orcidid><orcidid>https://orcid.org/0000-0003-3180-459X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-091X |
ispartof | Basin research, 2018-02, Vol.30 (S1), p.101-123 |
issn | 0950-091X 1365-2117 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01371582v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Basin geometry Basins Computer simulation Depth Earth Sciences Geochemistry Geology Heterogeneity Jurassic Lithology Mathematical models Mineralogy Modelling Organic carbon Organic matter Outcrops Oxygen Oxygen content Parameters Productivity Rocks Sciences of the Universe Sedimentation Sedimentation & deposition Sediments Stratigraphy Temperature (air-sea) Thickness Three dimensional models |
title | 3D numerical modelling of marine organic matter distribution: example of the early Jurassic sequences of the Lusitanian Basin (Portugal) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20numerical%20modelling%20of%20marine%20organic%20matter%20distribution:%20example%20of%20the%20early%20Jurassic%20sequences%20of%20the%20Lusitanian%20Basin%20(Portugal)&rft.jtitle=Basin%20research&rft.au=Bruneau,%20Benjamin&rft.date=2018-02&rft.volume=30&rft.issue=S1&rft.spage=101&rft.epage=123&rft.pages=101-123&rft.issn=0950-091X&rft.eissn=1365-2117&rft_id=info:doi/10.1111/bre.12210&rft_dat=%3Cproquest_hal_p%3E1987322563%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987322563&rft_id=info:pmid/&rfr_iscdi=true |