A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction

In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2008-01, Vol.30 (2), p.572-596
Hauptverfasser: Hüeber, S., Stadler, G., Wohlmuth, B. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 2
container_start_page 572
container_title SIAM journal on scientific computing
container_volume 30
creator Hüeber, S.
Stadler, G.
Wohlmuth, B. I.
description In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the three-dimensional friction conditions, a primal-dual active set algorithm is derived. The method determines active contact and friction nodes and, at the same time, resolves the additional nonlinearity originating from sliding nodes. No regularization and no penalization are applied, and superlinear convergence can be observed locally. In combination with a multigrid method, it defines a robust and fast strategy for contact problems with Tresca or Coulomb friction. The efficiency and flexibility of the method is illustrated by several numerical examples.
doi_str_mv 10.1137/060671061
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01371357v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584090891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-4d23a5c42a9e2110555c2a09a148eecf87b660970e88dd17fb4eea06cc2ed8b83</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOKcXvkHwzotqTtokzWXZnBMGCs7rkKap62ibmXQT396Uybw6h5_vfHB-hG6BPACk4pFwwgUQDmdoAkSyRIAU5-POsySngl2iqxC2hADPJJ0gVeA333S6TeZ73eLCDM3B4nc74KL9dL4ZNh2uncfrjbc2mTed7UPj-ojOXD9oM8RzV7a2C_g7wjHdt64r8cI3UeX6a3RR6zbYm785RR-Lp_Vsmaxen19mxSoxKWVDklU01cxkVEtLAQhjzFBNpIYst9bUuSg5J1IQm-dVBaIuM2s14cZQW-Vlnk7R_dG70a3ajR_5H-V0o5bFSo0Zie1AysQBInt3ZHfefe1tGNTW7X38KShJgQiWS_kvNN6F4G19sgJRY9XqVHX6C0hGbvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921075899</pqid></control><display><type>article</type><title>A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction</title><source>SIAM Journals Online</source><creator>Hüeber, S. ; Stadler, G. ; Wohlmuth, B. I.</creator><creatorcontrib>Hüeber, S. ; Stadler, G. ; Wohlmuth, B. I.</creatorcontrib><description>In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the three-dimensional friction conditions, a primal-dual active set algorithm is derived. The method determines active contact and friction nodes and, at the same time, resolves the additional nonlinearity originating from sliding nodes. No regularization and no penalization are applied, and superlinear convergence can be observed locally. In combination with a multigrid method, it defines a robust and fast strategy for contact problems with Tresca or Coulomb friction. The efficiency and flexibility of the method is illustrated by several numerical examples.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/060671061</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Engineering Sciences ; Friction ; Lagrange multiplier ; Methods</subject><ispartof>SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.572-596</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-4d23a5c42a9e2110555c2a09a148eecf87b660970e88dd17fb4eea06cc2ed8b83</citedby><cites>FETCH-LOGICAL-c325t-4d23a5c42a9e2110555c2a09a148eecf87b660970e88dd17fb4eea06cc2ed8b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01371357$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hüeber, S.</creatorcontrib><creatorcontrib>Stadler, G.</creatorcontrib><creatorcontrib>Wohlmuth, B. I.</creatorcontrib><title>A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction</title><title>SIAM journal on scientific computing</title><description>In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the three-dimensional friction conditions, a primal-dual active set algorithm is derived. The method determines active contact and friction nodes and, at the same time, resolves the additional nonlinearity originating from sliding nodes. No regularization and no penalization are applied, and superlinear convergence can be observed locally. In combination with a multigrid method, it defines a robust and fast strategy for contact problems with Tresca or Coulomb friction. The efficiency and flexibility of the method is illustrated by several numerical examples.</description><subject>Algorithms</subject><subject>Engineering Sciences</subject><subject>Friction</subject><subject>Lagrange multiplier</subject><subject>Methods</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkNFKwzAUhoMoOKcXvkHwzotqTtokzWXZnBMGCs7rkKap62ibmXQT396Uybw6h5_vfHB-hG6BPACk4pFwwgUQDmdoAkSyRIAU5-POsySngl2iqxC2hADPJJ0gVeA333S6TeZ73eLCDM3B4nc74KL9dL4ZNh2uncfrjbc2mTed7UPj-ojOXD9oM8RzV7a2C_g7wjHdt64r8cI3UeX6a3RR6zbYm785RR-Lp_Vsmaxen19mxSoxKWVDklU01cxkVEtLAQhjzFBNpIYst9bUuSg5J1IQm-dVBaIuM2s14cZQW-Vlnk7R_dG70a3ajR_5H-V0o5bFSo0Zie1AysQBInt3ZHfefe1tGNTW7X38KShJgQiWS_kvNN6F4G19sgJRY9XqVHX6C0hGbvg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Hüeber, S.</creator><creator>Stadler, G.</creator><creator>Wohlmuth, B. I.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20080101</creationdate><title>A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction</title><author>Hüeber, S. ; Stadler, G. ; Wohlmuth, B. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-4d23a5c42a9e2110555c2a09a148eecf87b660970e88dd17fb4eea06cc2ed8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Engineering Sciences</topic><topic>Friction</topic><topic>Lagrange multiplier</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hüeber, S.</creatorcontrib><creatorcontrib>Stadler, G.</creatorcontrib><creatorcontrib>Wohlmuth, B. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hüeber, S.</au><au>Stadler, G.</au><au>Wohlmuth, B. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>30</volume><issue>2</issue><spage>572</spage><epage>596</epage><pages>572-596</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the three-dimensional friction conditions, a primal-dual active set algorithm is derived. The method determines active contact and friction nodes and, at the same time, resolves the additional nonlinearity originating from sliding nodes. No regularization and no penalization are applied, and superlinear convergence can be observed locally. In combination with a multigrid method, it defines a robust and fast strategy for contact problems with Tresca or Coulomb friction. The efficiency and flexibility of the method is illustrated by several numerical examples.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/060671061</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.572-596
issn 1064-8275
1095-7197
language eng
recordid cdi_hal_primary_oai_HAL_hal_01371357v1
source SIAM Journals Online
subjects Algorithms
Engineering Sciences
Friction
Lagrange multiplier
Methods
title A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Primal-Dual%20Active%20Set%20Algorithm%20for%20Three-Dimensional%20Contact%20Problems%20with%20Coulomb%20Friction&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=H%C3%BCeber,%20S.&rft.date=2008-01-01&rft.volume=30&rft.issue=2&rft.spage=572&rft.epage=596&rft.pages=572-596&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/060671061&rft_dat=%3Cproquest_hal_p%3E2584090891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921075899&rft_id=info:pmid/&rfr_iscdi=true