Plasma-treated phosphonic acid-based membranes for fuel cell
In the highly competitive market of fuel cells, proton exchange membrane fuel cells operating in the range 80–150 °C seem quite promising. One of the main hurdles for emergence of such a technology is the development of phosphonic acid-based membranes characterized by high conductivity and stability...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2016-09, Vol.41 (34), p.15593-15604 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15604 |
---|---|
container_issue | 34 |
container_start_page | 15593 |
container_title | International journal of hydrogen energy |
container_volume | 41 |
creator | Bassil, Joelle Labalme, Etienne Souquet-Grumey, Julien Roualdès, Stéphanie David, Ghislain Bigarré, Janick Buvat, Pierrick |
description | In the highly competitive market of fuel cells, proton exchange membrane fuel cells operating in the range 80–150 °C seem quite promising. One of the main hurdles for emergence of such a technology is the development of phosphonic acid-based membranes characterized by high conductivity and stability beyond 80 °C. In this work, new polymer blend membranes mixing a fluorinated polymer (poly(VDF-co-CTFE)) and a phosphonated polymer (poly(CTFE-alt-DEVEP)) have been prepared at low cost. High proton conductivity (40 mS m−1 at 80 °C, 100% HR) and good thermal stability, directly related to the specific structuration of membranes, have been demonstrated. Due to cross-linking effect, argon plasma treatment of blend membranes has enabled to improve their thermal stability and fuel retention without altering their morphology, chemical composition and proton conductivity. Plasma-treated blend membranes appear as good candidates for PEMFC, as shown by preliminary fuel cell tests.
•New polymer blend membranes containing phosphonic acid groups have been prepared.•High proton conductivity and good thermal stability have been demonstrated.•Argon plasma treatment has enabled to improve blend membrane properties.•Plasma-treated blend membranes appear as good candidates for PEMFC. |
doi_str_mv | 10.1016/j.ijhydene.2016.06.144 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01357052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319916306565</els_id><sourcerecordid>S0360319916306565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-d0e1c3c33f53372c8d7c33290241cd6a13784940ad60faaae655f4aaa48e5af73</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4F2auHXV822WQXPFiKWqGgBz2HNHmhWfajJGuh_96UqlcPj_dmmBl4Q8gthYICFfdt4dvtweKARZlwAaKgnJ-RGa1lkzNey3MyAyYgZ7RpLslVjC0AlcCbGXl473TsdT4F1BPabLcdY5rBm0wbb_ONjontsd8EPWDM3Bgy94VdZrDrrsmF013Em589J5_PTx_LVb5-e3ldLta5qUo25RaQGmYYcxVjsjS1lQmUDZScGis0ZbLmDQdtBTitNYqqcjwdvMZKO8nm5O6Uu9Wd2gXf63BQo_ZqtVirIweUVRKqck-TVpy0JowxBnR_Bgrq2Jdq1W9f6tiXAqFSX8n4eDJi-mTvMahoPA4GrQ9oJmVH_1_ENzCJdqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasma-treated phosphonic acid-based membranes for fuel cell</title><source>Elsevier ScienceDirect Journals</source><creator>Bassil, Joelle ; Labalme, Etienne ; Souquet-Grumey, Julien ; Roualdès, Stéphanie ; David, Ghislain ; Bigarré, Janick ; Buvat, Pierrick</creator><creatorcontrib>Bassil, Joelle ; Labalme, Etienne ; Souquet-Grumey, Julien ; Roualdès, Stéphanie ; David, Ghislain ; Bigarré, Janick ; Buvat, Pierrick</creatorcontrib><description>In the highly competitive market of fuel cells, proton exchange membrane fuel cells operating in the range 80–150 °C seem quite promising. One of the main hurdles for emergence of such a technology is the development of phosphonic acid-based membranes characterized by high conductivity and stability beyond 80 °C. In this work, new polymer blend membranes mixing a fluorinated polymer (poly(VDF-co-CTFE)) and a phosphonated polymer (poly(CTFE-alt-DEVEP)) have been prepared at low cost. High proton conductivity (40 mS m−1 at 80 °C, 100% HR) and good thermal stability, directly related to the specific structuration of membranes, have been demonstrated. Due to cross-linking effect, argon plasma treatment of blend membranes has enabled to improve their thermal stability and fuel retention without altering their morphology, chemical composition and proton conductivity. Plasma-treated blend membranes appear as good candidates for PEMFC, as shown by preliminary fuel cell tests.
•New polymer blend membranes containing phosphonic acid groups have been prepared.•High proton conductivity and good thermal stability have been demonstrated.•Argon plasma treatment has enabled to improve blend membrane properties.•Plasma-treated blend membranes appear as good candidates for PEMFC.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2016.06.144</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blend membranes ; Chemical Sciences ; Fluorinated copolymer ; PEMFC ; Phosphonated copolymer ; Plasma treatment ; Polymers</subject><ispartof>International journal of hydrogen energy, 2016-09, Vol.41 (34), p.15593-15604</ispartof><rights>2016 Hydrogen Energy Publications LLC</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-d0e1c3c33f53372c8d7c33290241cd6a13784940ad60faaae655f4aaa48e5af73</citedby><cites>FETCH-LOGICAL-c523t-d0e1c3c33f53372c8d7c33290241cd6a13784940ad60faaae655f4aaa48e5af73</cites><orcidid>0000-0002-7201-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319916306565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01357052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassil, Joelle</creatorcontrib><creatorcontrib>Labalme, Etienne</creatorcontrib><creatorcontrib>Souquet-Grumey, Julien</creatorcontrib><creatorcontrib>Roualdès, Stéphanie</creatorcontrib><creatorcontrib>David, Ghislain</creatorcontrib><creatorcontrib>Bigarré, Janick</creatorcontrib><creatorcontrib>Buvat, Pierrick</creatorcontrib><title>Plasma-treated phosphonic acid-based membranes for fuel cell</title><title>International journal of hydrogen energy</title><description>In the highly competitive market of fuel cells, proton exchange membrane fuel cells operating in the range 80–150 °C seem quite promising. One of the main hurdles for emergence of such a technology is the development of phosphonic acid-based membranes characterized by high conductivity and stability beyond 80 °C. In this work, new polymer blend membranes mixing a fluorinated polymer (poly(VDF-co-CTFE)) and a phosphonated polymer (poly(CTFE-alt-DEVEP)) have been prepared at low cost. High proton conductivity (40 mS m−1 at 80 °C, 100% HR) and good thermal stability, directly related to the specific structuration of membranes, have been demonstrated. Due to cross-linking effect, argon plasma treatment of blend membranes has enabled to improve their thermal stability and fuel retention without altering their morphology, chemical composition and proton conductivity. Plasma-treated blend membranes appear as good candidates for PEMFC, as shown by preliminary fuel cell tests.
•New polymer blend membranes containing phosphonic acid groups have been prepared.•High proton conductivity and good thermal stability have been demonstrated.•Argon plasma treatment has enabled to improve blend membrane properties.•Plasma-treated blend membranes appear as good candidates for PEMFC.</description><subject>Blend membranes</subject><subject>Chemical Sciences</subject><subject>Fluorinated copolymer</subject><subject>PEMFC</subject><subject>Phosphonated copolymer</subject><subject>Plasma treatment</subject><subject>Polymers</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4F2auHXV822WQXPFiKWqGgBz2HNHmhWfajJGuh_96UqlcPj_dmmBl4Q8gthYICFfdt4dvtweKARZlwAaKgnJ-RGa1lkzNey3MyAyYgZ7RpLslVjC0AlcCbGXl473TsdT4F1BPabLcdY5rBm0wbb_ONjontsd8EPWDM3Bgy94VdZrDrrsmF013Em589J5_PTx_LVb5-e3ldLta5qUo25RaQGmYYcxVjsjS1lQmUDZScGis0ZbLmDQdtBTitNYqqcjwdvMZKO8nm5O6Uu9Wd2gXf63BQo_ZqtVirIweUVRKqck-TVpy0JowxBnR_Bgrq2Jdq1W9f6tiXAqFSX8n4eDJi-mTvMahoPA4GrQ9oJmVH_1_ENzCJdqA</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Bassil, Joelle</creator><creator>Labalme, Etienne</creator><creator>Souquet-Grumey, Julien</creator><creator>Roualdès, Stéphanie</creator><creator>David, Ghislain</creator><creator>Bigarré, Janick</creator><creator>Buvat, Pierrick</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7201-8125</orcidid></search><sort><creationdate>20160914</creationdate><title>Plasma-treated phosphonic acid-based membranes for fuel cell</title><author>Bassil, Joelle ; Labalme, Etienne ; Souquet-Grumey, Julien ; Roualdès, Stéphanie ; David, Ghislain ; Bigarré, Janick ; Buvat, Pierrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-d0e1c3c33f53372c8d7c33290241cd6a13784940ad60faaae655f4aaa48e5af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Blend membranes</topic><topic>Chemical Sciences</topic><topic>Fluorinated copolymer</topic><topic>PEMFC</topic><topic>Phosphonated copolymer</topic><topic>Plasma treatment</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassil, Joelle</creatorcontrib><creatorcontrib>Labalme, Etienne</creatorcontrib><creatorcontrib>Souquet-Grumey, Julien</creatorcontrib><creatorcontrib>Roualdès, Stéphanie</creatorcontrib><creatorcontrib>David, Ghislain</creatorcontrib><creatorcontrib>Bigarré, Janick</creatorcontrib><creatorcontrib>Buvat, Pierrick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassil, Joelle</au><au>Labalme, Etienne</au><au>Souquet-Grumey, Julien</au><au>Roualdès, Stéphanie</au><au>David, Ghislain</au><au>Bigarré, Janick</au><au>Buvat, Pierrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-treated phosphonic acid-based membranes for fuel cell</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2016-09-14</date><risdate>2016</risdate><volume>41</volume><issue>34</issue><spage>15593</spage><epage>15604</epage><pages>15593-15604</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>In the highly competitive market of fuel cells, proton exchange membrane fuel cells operating in the range 80–150 °C seem quite promising. One of the main hurdles for emergence of such a technology is the development of phosphonic acid-based membranes characterized by high conductivity and stability beyond 80 °C. In this work, new polymer blend membranes mixing a fluorinated polymer (poly(VDF-co-CTFE)) and a phosphonated polymer (poly(CTFE-alt-DEVEP)) have been prepared at low cost. High proton conductivity (40 mS m−1 at 80 °C, 100% HR) and good thermal stability, directly related to the specific structuration of membranes, have been demonstrated. Due to cross-linking effect, argon plasma treatment of blend membranes has enabled to improve their thermal stability and fuel retention without altering their morphology, chemical composition and proton conductivity. Plasma-treated blend membranes appear as good candidates for PEMFC, as shown by preliminary fuel cell tests.
•New polymer blend membranes containing phosphonic acid groups have been prepared.•High proton conductivity and good thermal stability have been demonstrated.•Argon plasma treatment has enabled to improve blend membrane properties.•Plasma-treated blend membranes appear as good candidates for PEMFC.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2016.06.144</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7201-8125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2016-09, Vol.41 (34), p.15593-15604 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01357052v1 |
source | Elsevier ScienceDirect Journals |
subjects | Blend membranes Chemical Sciences Fluorinated copolymer PEMFC Phosphonated copolymer Plasma treatment Polymers |
title | Plasma-treated phosphonic acid-based membranes for fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-treated%20phosphonic%20acid-based%20membranes%20for%20fuel%20cell&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Bassil,%20Joelle&rft.date=2016-09-14&rft.volume=41&rft.issue=34&rft.spage=15593&rft.epage=15604&rft.pages=15593-15604&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2016.06.144&rft_dat=%3Celsevier_hal_p%3ES0360319916306565%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319916306565&rfr_iscdi=true |