Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal

A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches dea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of parallel and distributed computing 2016-01, Vol.87, p.67-79
Hauptverfasser: Nicolae, Bogdan, Kochut, Andrzej, Karve, Alexei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue
container_start_page 67
container_title Journal of parallel and distributed computing
container_volume 87
creator Nicolae, Bogdan
Kochut, Andrzej
Karve, Alexei
description A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization. •Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.
doi_str_mv 10.1016/j.jpdc.2015.09.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01355213v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0743731515001732</els_id><sourcerecordid>1778035124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1EJZbSP9CTj3BIGNtxnCAuqwpopZU40J6tiT2mWWXjEGe38O9x2KpHTqMZfe9pZh5j1wJKAaL-uC_3k3elBKFLaEuA-hXbCGjrApqqec02YCpVGCX0G_Y2pT2AENo0G3a8j084-8STwwG7gXgcC08HHD13cRjILf2JuMcFOTpHKfF-5HeIP7gb4tGnT3w7cvQ4_eNWCXZxxuduXGhcOP12jzj-JD7NcYoJh3fsIuCQ6Oq5XrKHr1_ub26L3fdvdzfbXeFULZeiCY600RXUramk9KGpQqukCgGwlkJ58lj5roOqC0Fi68FINBhaDcFIT-qSfTj7PuJgp7k_4PzHRuzt7XZn1xkIpXV2OonMvj-zeclfR0qLPfTJUb5npHhMVhjTgNJCVhmVZ9TNMaWZwou3ALvmYfd2zcOueVhobc4jiz6fRZQPPvU02-R6Gh35fs5ftj72_5P_BTUylPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778035124</pqid></control><display><type>article</type><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><source>Elsevier ScienceDirect Journals</source><creator>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</creator><creatorcontrib>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</creatorcontrib><description>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization. •Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1016/j.jpdc.2015.09.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive prefetching ; Analogies ; Collaborative content exchange ; Collective I/O ; Completion time ; Computer Science ; Distributed, Parallel, and Cluster Computing ; Exchange ; I/O access pattern awareness ; IaaS ; On-demand read access under concurrency ; Proposals ; Repositories ; Scalable content dissemination ; Strategy ; Utilization</subject><ispartof>Journal of parallel and distributed computing, 2016-01, Vol.87, p.67-79</ispartof><rights>2015 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</cites><orcidid>0000-0002-0661-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0743731515001732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01355213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolae, Bogdan</creatorcontrib><creatorcontrib>Kochut, Andrzej</creatorcontrib><creatorcontrib>Karve, Alexei</creatorcontrib><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><title>Journal of parallel and distributed computing</title><description>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization. •Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</description><subject>Adaptive prefetching</subject><subject>Analogies</subject><subject>Collaborative content exchange</subject><subject>Collective I/O</subject><subject>Completion time</subject><subject>Computer Science</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Exchange</subject><subject>I/O access pattern awareness</subject><subject>IaaS</subject><subject>On-demand read access under concurrency</subject><subject>Proposals</subject><subject>Repositories</subject><subject>Scalable content dissemination</subject><subject>Strategy</subject><subject>Utilization</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS1EJZbSP9CTj3BIGNtxnCAuqwpopZU40J6tiT2mWWXjEGe38O9x2KpHTqMZfe9pZh5j1wJKAaL-uC_3k3elBKFLaEuA-hXbCGjrApqqec02YCpVGCX0G_Y2pT2AENo0G3a8j084-8STwwG7gXgcC08HHD13cRjILf2JuMcFOTpHKfF-5HeIP7gb4tGnT3w7cvQ4_eNWCXZxxuduXGhcOP12jzj-JD7NcYoJh3fsIuCQ6Oq5XrKHr1_ub26L3fdvdzfbXeFULZeiCY600RXUramk9KGpQqukCgGwlkJ58lj5roOqC0Fi68FINBhaDcFIT-qSfTj7PuJgp7k_4PzHRuzt7XZn1xkIpXV2OonMvj-zeclfR0qLPfTJUb5npHhMVhjTgNJCVhmVZ9TNMaWZwou3ALvmYfd2zcOueVhobc4jiz6fRZQPPvU02-R6Gh35fs5ftj72_5P_BTUylPc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Nicolae, Bogdan</creator><creator>Kochut, Andrzej</creator><creator>Karve, Alexei</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0661-7509</orcidid></search><sort><creationdate>201601</creationdate><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><author>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive prefetching</topic><topic>Analogies</topic><topic>Collaborative content exchange</topic><topic>Collective I/O</topic><topic>Completion time</topic><topic>Computer Science</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Exchange</topic><topic>I/O access pattern awareness</topic><topic>IaaS</topic><topic>On-demand read access under concurrency</topic><topic>Proposals</topic><topic>Repositories</topic><topic>Scalable content dissemination</topic><topic>Strategy</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolae, Bogdan</creatorcontrib><creatorcontrib>Kochut, Andrzej</creatorcontrib><creatorcontrib>Karve, Alexei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolae, Bogdan</au><au>Kochut, Andrzej</au><au>Karve, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>2016-01</date><risdate>2016</risdate><volume>87</volume><spage>67</spage><epage>79</epage><pages>67-79</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization. •Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jpdc.2015.09.006</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0661-7509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7315
ispartof Journal of parallel and distributed computing, 2016-01, Vol.87, p.67-79
issn 0743-7315
1096-0848
language eng
recordid cdi_hal_primary_oai_HAL_hal_01355213v1
source Elsevier ScienceDirect Journals
subjects Adaptive prefetching
Analogies
Collaborative content exchange
Collective I/O
Completion time
Computer Science
Distributed, Parallel, and Cluster Computing
Exchange
I/O access pattern awareness
IaaS
On-demand read access under concurrency
Proposals
Repositories
Scalable content dissemination
Strategy
Utilization
title Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20scalable%20on-demand%20collective%20data%20access%20in%20IaaS%20clouds:%20An%20adaptive%20collaborative%20content%20exchange%20proposal&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Nicolae,%20Bogdan&rft.date=2016-01&rft.volume=87&rft.spage=67&rft.epage=79&rft.pages=67-79&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1016/j.jpdc.2015.09.006&rft_dat=%3Cproquest_hal_p%3E1778035124%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778035124&rft_id=info:pmid/&rft_els_id=S0743731515001732&rfr_iscdi=true