Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal
A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches dea...
Gespeichert in:
Veröffentlicht in: | Journal of parallel and distributed computing 2016-01, Vol.87, p.67-79 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Journal of parallel and distributed computing |
container_volume | 87 |
creator | Nicolae, Bogdan Kochut, Andrzej Karve, Alexei |
description | A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization.
•Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes. |
doi_str_mv | 10.1016/j.jpdc.2015.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01355213v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0743731515001732</els_id><sourcerecordid>1778035124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1EJZbSP9CTj3BIGNtxnCAuqwpopZU40J6tiT2mWWXjEGe38O9x2KpHTqMZfe9pZh5j1wJKAaL-uC_3k3elBKFLaEuA-hXbCGjrApqqec02YCpVGCX0G_Y2pT2AENo0G3a8j084-8STwwG7gXgcC08HHD13cRjILf2JuMcFOTpHKfF-5HeIP7gb4tGnT3w7cvQ4_eNWCXZxxuduXGhcOP12jzj-JD7NcYoJh3fsIuCQ6Oq5XrKHr1_ub26L3fdvdzfbXeFULZeiCY600RXUramk9KGpQqukCgGwlkJ58lj5roOqC0Fi68FINBhaDcFIT-qSfTj7PuJgp7k_4PzHRuzt7XZn1xkIpXV2OonMvj-zeclfR0qLPfTJUb5npHhMVhjTgNJCVhmVZ9TNMaWZwou3ALvmYfd2zcOueVhobc4jiz6fRZQPPvU02-R6Gh35fs5ftj72_5P_BTUylPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778035124</pqid></control><display><type>article</type><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><source>Elsevier ScienceDirect Journals</source><creator>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</creator><creatorcontrib>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</creatorcontrib><description>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization.
•Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1016/j.jpdc.2015.09.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adaptive prefetching ; Analogies ; Collaborative content exchange ; Collective I/O ; Completion time ; Computer Science ; Distributed, Parallel, and Cluster Computing ; Exchange ; I/O access pattern awareness ; IaaS ; On-demand read access under concurrency ; Proposals ; Repositories ; Scalable content dissemination ; Strategy ; Utilization</subject><ispartof>Journal of parallel and distributed computing, 2016-01, Vol.87, p.67-79</ispartof><rights>2015 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</cites><orcidid>0000-0002-0661-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0743731515001732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01355213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolae, Bogdan</creatorcontrib><creatorcontrib>Kochut, Andrzej</creatorcontrib><creatorcontrib>Karve, Alexei</creatorcontrib><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><title>Journal of parallel and distributed computing</title><description>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization.
•Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</description><subject>Adaptive prefetching</subject><subject>Analogies</subject><subject>Collaborative content exchange</subject><subject>Collective I/O</subject><subject>Completion time</subject><subject>Computer Science</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Exchange</subject><subject>I/O access pattern awareness</subject><subject>IaaS</subject><subject>On-demand read access under concurrency</subject><subject>Proposals</subject><subject>Repositories</subject><subject>Scalable content dissemination</subject><subject>Strategy</subject><subject>Utilization</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS1EJZbSP9CTj3BIGNtxnCAuqwpopZU40J6tiT2mWWXjEGe38O9x2KpHTqMZfe9pZh5j1wJKAaL-uC_3k3elBKFLaEuA-hXbCGjrApqqec02YCpVGCX0G_Y2pT2AENo0G3a8j084-8STwwG7gXgcC08HHD13cRjILf2JuMcFOTpHKfF-5HeIP7gb4tGnT3w7cvQ4_eNWCXZxxuduXGhcOP12jzj-JD7NcYoJh3fsIuCQ6Oq5XrKHr1_ub26L3fdvdzfbXeFULZeiCY600RXUramk9KGpQqukCgGwlkJ58lj5roOqC0Fi68FINBhaDcFIT-qSfTj7PuJgp7k_4PzHRuzt7XZn1xkIpXV2OonMvj-zeclfR0qLPfTJUb5npHhMVhjTgNJCVhmVZ9TNMaWZwou3ALvmYfd2zcOueVhobc4jiz6fRZQPPvU02-R6Gh35fs5ftj72_5P_BTUylPc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Nicolae, Bogdan</creator><creator>Kochut, Andrzej</creator><creator>Karve, Alexei</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0661-7509</orcidid></search><sort><creationdate>201601</creationdate><title>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</title><author>Nicolae, Bogdan ; Kochut, Andrzej ; Karve, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-8fce57540697422df84f9323ff0a6213deda4dbb04bff2a9d072a7af950f72de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive prefetching</topic><topic>Analogies</topic><topic>Collaborative content exchange</topic><topic>Collective I/O</topic><topic>Completion time</topic><topic>Computer Science</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Exchange</topic><topic>I/O access pattern awareness</topic><topic>IaaS</topic><topic>On-demand read access under concurrency</topic><topic>Proposals</topic><topic>Repositories</topic><topic>Scalable content dissemination</topic><topic>Strategy</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolae, Bogdan</creatorcontrib><creatorcontrib>Kochut, Andrzej</creatorcontrib><creatorcontrib>Karve, Alexei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolae, Bogdan</au><au>Kochut, Andrzej</au><au>Karve, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>2016-01</date><risdate>2016</risdate><volume>87</volume><spage>67</spage><epage>79</epage><pages>67-79</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization.
•Studies efficient on-demand read access to shared content in large scale IaaS clouds.•Introduces I/O access pattern aware techniques and algorithms.•Substantial benefits demonstrated using experimental results involving dozens of nodes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jpdc.2015.09.006</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0661-7509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7315 |
ispartof | Journal of parallel and distributed computing, 2016-01, Vol.87, p.67-79 |
issn | 0743-7315 1096-0848 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01355213v1 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive prefetching Analogies Collaborative content exchange Collective I/O Completion time Computer Science Distributed, Parallel, and Cluster Computing Exchange I/O access pattern awareness IaaS On-demand read access under concurrency Proposals Repositories Scalable content dissemination Strategy Utilization |
title | Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20scalable%20on-demand%20collective%20data%20access%20in%20IaaS%20clouds:%20An%20adaptive%20collaborative%20content%20exchange%20proposal&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Nicolae,%20Bogdan&rft.date=2016-01&rft.volume=87&rft.spage=67&rft.epage=79&rft.pages=67-79&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1016/j.jpdc.2015.09.006&rft_dat=%3Cproquest_hal_p%3E1778035124%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778035124&rft_id=info:pmid/&rft_els_id=S0743731515001732&rfr_iscdi=true |