A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem

In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2018-03, Vol.74 (3), p.1677-1705
Hauptverfasser: Di Pietro, Daniele A., Krell, Stella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1705
container_issue 3
container_start_page 1677
container_title Journal of scientific computing
container_volume 74
creator Di Pietro, Daniele A.
Krell, Stella
description In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the L 2 -norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree k ≥ 0 at mesh elements and faces are used, both quantities are proved to converge as h k + 1 (with h denoting the meshsize).
doi_str_mv 10.1007/s10915-017-0512-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01349519v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH8ewF3AlYtobjIzSZZF1BaqFtR1yGTu2NG2qckoduc7-IY-iVNGdOXqwuE7H5dDyBHwU-BcnSXgBnLGQTGeg2DvW2QAuZJMFQa2yYBrnTOVqWyX7KX0xDk32ogBmQ7paF3GpqKj5nHGbmOFkV5jOwsVrUOk7QzpXYuuWtPx0ofFKmJKTTlHeuPeGoxfH593bXjGRKcxdPHigOzUbp7w8Ofuk4fLi_vzEZvcXo3PhxPmpZEtK-sKvCkrh1J6XjitS-59AVBj6TPnnZY5LwrwHA1qzKDyUmQ6V3kphaiV3CcnvXfm5nYVm4WLaxtcY0fDid1kHGRmcjBvomOPe3YVw8srptY-hde47N6zwoCWkAmhOwp6yseQUsT6Vwvcbka2_cidWdnNyPa964i-kzp2-Yjxz_x_6Rv0kn-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314228</pqid></control><display><type>article</type><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Di Pietro, Daniele A. ; Krell, Stella</creator><creatorcontrib>Di Pietro, Daniele A. ; Krell, Stella</creatorcontrib><description>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the L 2 -norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree k ≥ 0 at mesh elements and faces are used, both quantities are proved to converge as h k + 1 (with h denoting the meshsize).</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0512-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Convergence ; Exact solutions ; Finite volume method ; Fluid flow ; Fluid mechanics ; Kinematics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Mechanics ; Navier-Stokes equations ; Numerical Analysis ; Physics ; Polynomials ; Standard data ; Theoretical ; Velocity</subject><ispartof>Journal of scientific computing, 2018-03, Vol.74 (3), p.1677-1705</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</citedby><cites>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0512-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314228?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,778,782,883,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01349519$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Pietro, Daniele A.</creatorcontrib><creatorcontrib>Krell, Stella</creatorcontrib><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the L 2 -norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree k ≥ 0 at mesh elements and faces are used, both quantities are proved to converge as h k + 1 (with h denoting the meshsize).</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Exact solutions</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Kinematics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Standard data</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEUhYMoWH8ewF3AlYtobjIzSZZF1BaqFtR1yGTu2NG2qckoduc7-IY-iVNGdOXqwuE7H5dDyBHwU-BcnSXgBnLGQTGeg2DvW2QAuZJMFQa2yYBrnTOVqWyX7KX0xDk32ogBmQ7paF3GpqKj5nHGbmOFkV5jOwsVrUOk7QzpXYuuWtPx0ofFKmJKTTlHeuPeGoxfH593bXjGRKcxdPHigOzUbp7w8Ofuk4fLi_vzEZvcXo3PhxPmpZEtK-sKvCkrh1J6XjitS-59AVBj6TPnnZY5LwrwHA1qzKDyUmQ6V3kphaiV3CcnvXfm5nYVm4WLaxtcY0fDid1kHGRmcjBvomOPe3YVw8srptY-hde47N6zwoCWkAmhOwp6yseQUsT6Vwvcbka2_cidWdnNyPa964i-kzp2-Yjxz_x_6Rv0kn-V</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Di Pietro, Daniele A.</creator><creator>Krell, Stella</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20180301</creationdate><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><author>Di Pietro, Daniele A. ; Krell, Stella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Exact solutions</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Kinematics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Standard data</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Pietro, Daniele A.</creatorcontrib><creatorcontrib>Krell, Stella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Pietro, Daniele A.</au><au>Krell, Stella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>74</volume><issue>3</issue><spage>1677</spage><epage>1705</epage><pages>1677-1705</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the L 2 -norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree k ≥ 0 at mesh elements and faces are used, both quantities are proved to converge as h k + 1 (with h denoting the meshsize).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0512-x</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2018-03, Vol.74 (3), p.1677-1705
issn 0885-7474
1573-7691
language eng
recordid cdi_hal_primary_oai_HAL_hal_01349519v2
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Convergence
Exact solutions
Finite volume method
Fluid flow
Fluid mechanics
Kinematics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Mechanics
Navier-Stokes equations
Numerical Analysis
Physics
Polynomials
Standard data
Theoretical
Velocity
title A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20High-Order%20Method%20for%20the%20Steady%20Incompressible%20Navier%E2%80%93Stokes%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Di%20Pietro,%20Daniele%20A.&rft.date=2018-03-01&rft.volume=74&rft.issue=3&rft.spage=1677&rft.epage=1705&rft.pages=1677-1705&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0512-x&rft_dat=%3Cproquest_hal_p%3E2918314228%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314228&rft_id=info:pmid/&rfr_iscdi=true