A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem
In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of stat...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2018-03, Vol.74 (3), p.1677-1705 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1705 |
---|---|
container_issue | 3 |
container_start_page | 1677 |
container_title | Journal of scientific computing |
container_volume | 74 |
creator | Di Pietro, Daniele A. Krell, Stella |
description | In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the
L
2
-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k
≥
0
at mesh elements and faces are used, both quantities are proved to converge as
h
k
+
1
(with
h
denoting the meshsize). |
doi_str_mv | 10.1007/s10915-017-0512-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01349519v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918314228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH8ewF3AlYtobjIzSZZF1BaqFtR1yGTu2NG2qckoduc7-IY-iVNGdOXqwuE7H5dDyBHwU-BcnSXgBnLGQTGeg2DvW2QAuZJMFQa2yYBrnTOVqWyX7KX0xDk32ogBmQ7paF3GpqKj5nHGbmOFkV5jOwsVrUOk7QzpXYuuWtPx0ofFKmJKTTlHeuPeGoxfH593bXjGRKcxdPHigOzUbp7w8Ofuk4fLi_vzEZvcXo3PhxPmpZEtK-sKvCkrh1J6XjitS-59AVBj6TPnnZY5LwrwHA1qzKDyUmQ6V3kphaiV3CcnvXfm5nYVm4WLaxtcY0fDid1kHGRmcjBvomOPe3YVw8srptY-hde47N6zwoCWkAmhOwp6yseQUsT6Vwvcbka2_cidWdnNyPa964i-kzp2-Yjxz_x_6Rv0kn-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918314228</pqid></control><display><type>article</type><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Di Pietro, Daniele A. ; Krell, Stella</creator><creatorcontrib>Di Pietro, Daniele A. ; Krell, Stella</creatorcontrib><description>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the
L
2
-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k
≥
0
at mesh elements and faces are used, both quantities are proved to converge as
h
k
+
1
(with
h
denoting the meshsize).</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-017-0512-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Convergence ; Exact solutions ; Finite volume method ; Fluid flow ; Fluid mechanics ; Kinematics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Mechanics ; Navier-Stokes equations ; Numerical Analysis ; Physics ; Polynomials ; Standard data ; Theoretical ; Velocity</subject><ispartof>Journal of scientific computing, 2018-03, Vol.74 (3), p.1677-1705</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</citedby><cites>FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-017-0512-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918314228?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,778,782,883,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01349519$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Pietro, Daniele A.</creatorcontrib><creatorcontrib>Krell, Stella</creatorcontrib><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the
L
2
-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k
≥
0
at mesh elements and faces are used, both quantities are proved to converge as
h
k
+
1
(with
h
denoting the meshsize).</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Exact solutions</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Kinematics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Standard data</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEUhYMoWH8ewF3AlYtobjIzSZZF1BaqFtR1yGTu2NG2qckoduc7-IY-iVNGdOXqwuE7H5dDyBHwU-BcnSXgBnLGQTGeg2DvW2QAuZJMFQa2yYBrnTOVqWyX7KX0xDk32ogBmQ7paF3GpqKj5nHGbmOFkV5jOwsVrUOk7QzpXYuuWtPx0ofFKmJKTTlHeuPeGoxfH593bXjGRKcxdPHigOzUbp7w8Ofuk4fLi_vzEZvcXo3PhxPmpZEtK-sKvCkrh1J6XjitS-59AVBj6TPnnZY5LwrwHA1qzKDyUmQ6V3kphaiV3CcnvXfm5nYVm4WLaxtcY0fDid1kHGRmcjBvomOPe3YVw8srptY-hde47N6zwoCWkAmhOwp6yseQUsT6Vwvcbka2_cidWdnNyPa964i-kzp2-Yjxz_x_6Rv0kn-V</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Di Pietro, Daniele A.</creator><creator>Krell, Stella</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20180301</creationdate><title>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</title><author>Di Pietro, Daniele A. ; Krell, Stella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bfd1c9bdae33c06a88b0cc611febc4aca8350661c0e9e8e41dc3248575b322f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Exact solutions</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Kinematics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Standard data</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Pietro, Daniele A.</creatorcontrib><creatorcontrib>Krell, Stella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Pietro, Daniele A.</au><au>Krell, Stella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>74</volume><issue>3</issue><spage>1677</spage><epage>1705</epage><pages>1677-1705</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the
L
2
-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k
≥
0
at mesh elements and faces are used, both quantities are proved to converge as
h
k
+
1
(with
h
denoting the meshsize).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-017-0512-x</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2018-03, Vol.74 (3), p.1677-1705 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01349519v2 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Approximation Computational Mathematics and Numerical Analysis Convergence Exact solutions Finite volume method Fluid flow Fluid mechanics Kinematics Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Mechanics Navier-Stokes equations Numerical Analysis Physics Polynomials Standard data Theoretical Velocity |
title | A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20High-Order%20Method%20for%20the%20Steady%20Incompressible%20Navier%E2%80%93Stokes%20Problem&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Di%20Pietro,%20Daniele%20A.&rft.date=2018-03-01&rft.volume=74&rft.issue=3&rft.spage=1677&rft.epage=1705&rft.pages=1677-1705&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-017-0512-x&rft_dat=%3Cproquest_hal_p%3E2918314228%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918314228&rft_id=info:pmid/&rfr_iscdi=true |