Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems

A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2001-07, Vol.25 (1-3), p.33-48
Hauptverfasser: Mikhlin, Yu V, Morgunov, B I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1-3
container_start_page 33
container_title Nonlinear dynamics
container_volume 25
creator Mikhlin, Yu V
Morgunov, B I
description A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.
doi_str_mv 10.1023/A:1012942413955
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01347417v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26853719</sourcerecordid><originalsourceid>FETCH-LOGICAL-h287t-53516c1dcd365a0e6e6de0ee420b0f51153a967cac222208fb0971f28e98a3993</originalsourceid><addsrcrecordid>eNpdj81Lw0AUxBdRsFbPXgOC4CH69jNZb6VUK5R6qJbewjZ5oVs22bqbFvvfm6In32V4w28GhpBbCo8UGH8aPVOgTAsmKNdSnpEBlRlPmdKrczIAzUQKGlaX5CrGLQBwBvmALOc-NMYlS7sOprO-jYltkzmakI77B8Ohdw-YLNDV6eS7tB1WiWmrPhBLj87EzpbJ3LfOtn0oWRxjh028Jhe1cRFv_nRIPl8mH-NpOnt_fRuPZumG5VmXSi6pKmlVVlxJA6hQVQiIgsEaakmp5EarrDQl6w_yeg06ozXLUeeGa82H5OG3d2NcsQu2MeFYeGOL6WhWnDygXGSCZgfas_e_7C74rz3Grmj6DeicadHvY8FULnlGT6V3_8Ct34e231EwJrXQjAvFfwAEeW4H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259492346</pqid></control><display><type>article</type><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Mikhlin, Yu V ; Morgunov, B I</creator><creatorcontrib>Mikhlin, Yu V ; Morgunov, B I</creatorcontrib><description>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1012942413955</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Engineering Sciences ; Iterative methods ; Mechanical systems ; Mechanics ; Nonlinear analysis ; Nonlinear systems ; Perturbation ; Power series ; Vibration analysis ; Vibration mode ; Vibrations ; Viscoelasticity</subject><ispartof>Nonlinear dynamics, 2001-07, Vol.25 (1-3), p.33-48</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2001). All Rights Reserved.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01347417$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhlin, Yu V</creatorcontrib><creatorcontrib>Morgunov, B I</creatorcontrib><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><title>Nonlinear dynamics</title><description>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</description><subject>Engineering Sciences</subject><subject>Iterative methods</subject><subject>Mechanical systems</subject><subject>Mechanics</subject><subject>Nonlinear analysis</subject><subject>Nonlinear systems</subject><subject>Perturbation</subject><subject>Power series</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><subject>Vibrations</subject><subject>Viscoelasticity</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdj81Lw0AUxBdRsFbPXgOC4CH69jNZb6VUK5R6qJbewjZ5oVs22bqbFvvfm6In32V4w28GhpBbCo8UGH8aPVOgTAsmKNdSnpEBlRlPmdKrczIAzUQKGlaX5CrGLQBwBvmALOc-NMYlS7sOprO-jYltkzmakI77B8Ohdw-YLNDV6eS7tB1WiWmrPhBLj87EzpbJ3LfOtn0oWRxjh028Jhe1cRFv_nRIPl8mH-NpOnt_fRuPZumG5VmXSi6pKmlVVlxJA6hQVQiIgsEaakmp5EarrDQl6w_yeg06ozXLUeeGa82H5OG3d2NcsQu2MeFYeGOL6WhWnDygXGSCZgfas_e_7C74rz3Grmj6DeicadHvY8FULnlGT6V3_8Ct34e231EwJrXQjAvFfwAEeW4H</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Mikhlin, Yu V</creator><creator>Morgunov, B I</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20010701</creationdate><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><author>Mikhlin, Yu V ; Morgunov, B I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h287t-53516c1dcd365a0e6e6de0ee420b0f51153a967cac222208fb0971f28e98a3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Engineering Sciences</topic><topic>Iterative methods</topic><topic>Mechanical systems</topic><topic>Mechanics</topic><topic>Nonlinear analysis</topic><topic>Nonlinear systems</topic><topic>Perturbation</topic><topic>Power series</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><topic>Vibrations</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhlin, Yu V</creatorcontrib><creatorcontrib>Morgunov, B I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhlin, Yu V</au><au>Morgunov, B I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</atitle><jtitle>Nonlinear dynamics</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>25</volume><issue>1-3</issue><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1012942413955</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2001-07, Vol.25 (1-3), p.33-48
issn 0924-090X
1573-269X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01347417v1
source Springer Nature - Complete Springer Journals
subjects Engineering Sciences
Iterative methods
Mechanical systems
Mechanics
Nonlinear analysis
Nonlinear systems
Perturbation
Power series
Vibration analysis
Vibration mode
Vibrations
Viscoelasticity
title Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20Vibrations%20in%20Near-Conservative%20Self-Excited%20and%20Viscoelastic%20Nonlinear%20Systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Mikhlin,%20Yu%20V&rft.date=2001-07-01&rft.volume=25&rft.issue=1-3&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1012942413955&rft_dat=%3Cproquest_hal_p%3E26853719%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259492346&rft_id=info:pmid/&rfr_iscdi=true