Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems
A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented fo...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2001-07, Vol.25 (1-3), p.33-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1-3 |
container_start_page | 33 |
container_title | Nonlinear dynamics |
container_volume | 25 |
creator | Mikhlin, Yu V Morgunov, B I |
description | A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes. |
doi_str_mv | 10.1023/A:1012942413955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01347417v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26853719</sourcerecordid><originalsourceid>FETCH-LOGICAL-h287t-53516c1dcd365a0e6e6de0ee420b0f51153a967cac222208fb0971f28e98a3993</originalsourceid><addsrcrecordid>eNpdj81Lw0AUxBdRsFbPXgOC4CH69jNZb6VUK5R6qJbewjZ5oVs22bqbFvvfm6In32V4w28GhpBbCo8UGH8aPVOgTAsmKNdSnpEBlRlPmdKrczIAzUQKGlaX5CrGLQBwBvmALOc-NMYlS7sOprO-jYltkzmakI77B8Ohdw-YLNDV6eS7tB1WiWmrPhBLj87EzpbJ3LfOtn0oWRxjh028Jhe1cRFv_nRIPl8mH-NpOnt_fRuPZumG5VmXSi6pKmlVVlxJA6hQVQiIgsEaakmp5EarrDQl6w_yeg06ozXLUeeGa82H5OG3d2NcsQu2MeFYeGOL6WhWnDygXGSCZgfas_e_7C74rz3Grmj6DeicadHvY8FULnlGT6V3_8Ct34e231EwJrXQjAvFfwAEeW4H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259492346</pqid></control><display><type>article</type><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Mikhlin, Yu V ; Morgunov, B I</creator><creatorcontrib>Mikhlin, Yu V ; Morgunov, B I</creatorcontrib><description>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1012942413955</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Engineering Sciences ; Iterative methods ; Mechanical systems ; Mechanics ; Nonlinear analysis ; Nonlinear systems ; Perturbation ; Power series ; Vibration analysis ; Vibration mode ; Vibrations ; Viscoelasticity</subject><ispartof>Nonlinear dynamics, 2001-07, Vol.25 (1-3), p.33-48</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (2001). All Rights Reserved.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01347417$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhlin, Yu V</creatorcontrib><creatorcontrib>Morgunov, B I</creatorcontrib><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><title>Nonlinear dynamics</title><description>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</description><subject>Engineering Sciences</subject><subject>Iterative methods</subject><subject>Mechanical systems</subject><subject>Mechanics</subject><subject>Nonlinear analysis</subject><subject>Nonlinear systems</subject><subject>Perturbation</subject><subject>Power series</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><subject>Vibrations</subject><subject>Viscoelasticity</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdj81Lw0AUxBdRsFbPXgOC4CH69jNZb6VUK5R6qJbewjZ5oVs22bqbFvvfm6In32V4w28GhpBbCo8UGH8aPVOgTAsmKNdSnpEBlRlPmdKrczIAzUQKGlaX5CrGLQBwBvmALOc-NMYlS7sOprO-jYltkzmakI77B8Ohdw-YLNDV6eS7tB1WiWmrPhBLj87EzpbJ3LfOtn0oWRxjh028Jhe1cRFv_nRIPl8mH-NpOnt_fRuPZumG5VmXSi6pKmlVVlxJA6hQVQiIgsEaakmp5EarrDQl6w_yeg06ozXLUeeGa82H5OG3d2NcsQu2MeFYeGOL6WhWnDygXGSCZgfas_e_7C74rz3Grmj6DeicadHvY8FULnlGT6V3_8Ct34e231EwJrXQjAvFfwAEeW4H</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Mikhlin, Yu V</creator><creator>Morgunov, B I</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20010701</creationdate><title>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</title><author>Mikhlin, Yu V ; Morgunov, B I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h287t-53516c1dcd365a0e6e6de0ee420b0f51153a967cac222208fb0971f28e98a3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Engineering Sciences</topic><topic>Iterative methods</topic><topic>Mechanical systems</topic><topic>Mechanics</topic><topic>Nonlinear analysis</topic><topic>Nonlinear systems</topic><topic>Perturbation</topic><topic>Power series</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><topic>Vibrations</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhlin, Yu V</creatorcontrib><creatorcontrib>Morgunov, B I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhlin, Yu V</au><au>Morgunov, B I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems</atitle><jtitle>Nonlinear dynamics</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>25</volume><issue>1-3</issue><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1012942413955</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2001-07, Vol.25 (1-3), p.33-48 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01347417v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Engineering Sciences Iterative methods Mechanical systems Mechanics Nonlinear analysis Nonlinear systems Perturbation Power series Vibration analysis Vibration mode Vibrations Viscoelasticity |
title | Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20Vibrations%20in%20Near-Conservative%20Self-Excited%20and%20Viscoelastic%20Nonlinear%20Systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Mikhlin,%20Yu%20V&rft.date=2001-07-01&rft.volume=25&rft.issue=1-3&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1012942413955&rft_dat=%3Cproquest_hal_p%3E26853719%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259492346&rft_id=info:pmid/&rfr_iscdi=true |