On semibounded Wiener–Hopf operators

We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2017-06, Vol.95 (3), p.742-762
1. Verfasser: Yafaev, D. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 3
container_start_page 742
container_title Journal of the London Mathematical Society
container_volume 95
creator Yafaev, D. R.
description We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.
doi_str_mv 10.1112/jlms.12036
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01342784v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRMFY3PkFWgkLqvTPJTLIsxVol0oWKy2GS3MGU_JQZf-jOd_ANfRIbIy5dXTh853D5GDtFmCIiv1w3rZ8iByH3WICxzCKlEthnAQCPI4mgDtmR92sAFAg8YGerLvTU1kX_2lVUhU81deS-Pj6X_caG_YaceemdP2YH1jSeTn7vhD0urh7myyhfXd_MZ3lUCuAyqlKhjBAqTjmZ0kjOBScpCmuLpChQSgUykVVpq1IUitIsSUtLZC1kMQgFYsLOx91n0-iNq1vjtro3tV7Ocj1ku79jrtL4DXfsxciWrvfekf0rIOjBhh5s6B8bOxhH-L1uaPsPqW_zu_ux8w2GSGGG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On semibounded Wiener–Hopf operators</title><source>Access via Wiley Online Library</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12036</identifier><language>eng</language><publisher>London Mathematical Society ; Wiley</publisher><subject>47A05 ; 47A07 (primary) ; 47B25 ; 47B35 (secondary) ; Analysis of PDEs ; Mathematics</subject><ispartof>Journal of the London Mathematical Society, 2017-06, Vol.95 (3), p.742-762</ispartof><rights>2017 London Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01342784$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>On semibounded Wiener–Hopf operators</title><title>Journal of the London Mathematical Society</title><description>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</description><subject>47A05</subject><subject>47A07 (primary)</subject><subject>47B25</subject><subject>47B35 (secondary)</subject><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRMFY3PkFWgkLqvTPJTLIsxVol0oWKy2GS3MGU_JQZf-jOd_ANfRIbIy5dXTh853D5GDtFmCIiv1w3rZ8iByH3WICxzCKlEthnAQCPI4mgDtmR92sAFAg8YGerLvTU1kX_2lVUhU81deS-Pj6X_caG_YaceemdP2YH1jSeTn7vhD0urh7myyhfXd_MZ3lUCuAyqlKhjBAqTjmZ0kjOBScpCmuLpChQSgUykVVpq1IUitIsSUtLZC1kMQgFYsLOx91n0-iNq1vjtro3tV7Ocj1ku79jrtL4DXfsxciWrvfekf0rIOjBhh5s6B8bOxhH-L1uaPsPqW_zu_ux8w2GSGGG</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Yafaev, D. R.</creator><general>London Mathematical Society ; Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>201706</creationdate><title>On semibounded Wiener–Hopf operators</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47A05</topic><topic>47A07 (primary)</topic><topic>47B25</topic><topic>47B35 (secondary)</topic><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On semibounded Wiener–Hopf operators</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2017-06</date><risdate>2017</risdate><volume>95</volume><issue>3</issue><spage>742</spage><epage>762</epage><pages>742-762</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</abstract><pub>London Mathematical Society ; Wiley</pub><doi>10.1112/jlms.12036</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2017-06, Vol.95 (3), p.742-762
issn 0024-6107
1469-7750
language eng
recordid cdi_hal_primary_oai_HAL_hal_01342784v1
source Access via Wiley Online Library
subjects 47A05
47A07 (primary)
47B25
47B35 (secondary)
Analysis of PDEs
Mathematics
title On semibounded Wiener–Hopf operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20semibounded%20Wiener%E2%80%93Hopf%20operators&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Yafaev,%20D.%20R.&rft.date=2017-06&rft.volume=95&rft.issue=3&rft.spage=742&rft.epage=762&rft.pages=742-762&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12036&rft_dat=%3Cwiley_hal_p%3EJLMS12036%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true