On semibounded Wiener–Hopf operators
We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integ...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2017-06, Vol.95 (3), p.742-762 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 3 |
container_start_page | 742 |
container_title | Journal of the London Mathematical Society |
container_volume | 95 |
creator | Yafaev, D. R. |
description | We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper. |
doi_str_mv | 10.1112/jlms.12036 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01342784v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRMFY3PkFWgkLqvTPJTLIsxVol0oWKy2GS3MGU_JQZf-jOd_ANfRIbIy5dXTh853D5GDtFmCIiv1w3rZ8iByH3WICxzCKlEthnAQCPI4mgDtmR92sAFAg8YGerLvTU1kX_2lVUhU81deS-Pj6X_caG_YaceemdP2YH1jSeTn7vhD0urh7myyhfXd_MZ3lUCuAyqlKhjBAqTjmZ0kjOBScpCmuLpChQSgUykVVpq1IUitIsSUtLZC1kMQgFYsLOx91n0-iNq1vjtro3tV7Ocj1ku79jrtL4DXfsxciWrvfekf0rIOjBhh5s6B8bOxhH-L1uaPsPqW_zu_ux8w2GSGGG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On semibounded Wiener–Hopf operators</title><source>Access via Wiley Online Library</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12036</identifier><language>eng</language><publisher>London Mathematical Society ; Wiley</publisher><subject>47A05 ; 47A07 (primary) ; 47B25 ; 47B35 (secondary) ; Analysis of PDEs ; Mathematics</subject><ispartof>Journal of the London Mathematical Society, 2017-06, Vol.95 (3), p.742-762</ispartof><rights>2017 London Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01342784$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>On semibounded Wiener–Hopf operators</title><title>Journal of the London Mathematical Society</title><description>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</description><subject>47A05</subject><subject>47A07 (primary)</subject><subject>47B25</subject><subject>47B35 (secondary)</subject><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRMFY3PkFWgkLqvTPJTLIsxVol0oWKy2GS3MGU_JQZf-jOd_ANfRIbIy5dXTh853D5GDtFmCIiv1w3rZ8iByH3WICxzCKlEthnAQCPI4mgDtmR92sAFAg8YGerLvTU1kX_2lVUhU81deS-Pj6X_caG_YaceemdP2YH1jSeTn7vhD0urh7myyhfXd_MZ3lUCuAyqlKhjBAqTjmZ0kjOBScpCmuLpChQSgUykVVpq1IUitIsSUtLZC1kMQgFYsLOx91n0-iNq1vjtro3tV7Ocj1ku79jrtL4DXfsxciWrvfekf0rIOjBhh5s6B8bOxhH-L1uaPsPqW_zu_ux8w2GSGGG</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Yafaev, D. R.</creator><general>London Mathematical Society ; Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>201706</creationdate><title>On semibounded Wiener–Hopf operators</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3026-d837a337482eaca62232e63bffb5bb16670656dcfdc3b7e8958cfeeff09403703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47A05</topic><topic>47A07 (primary)</topic><topic>47B25</topic><topic>47B35 (secondary)</topic><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On semibounded Wiener–Hopf operators</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2017-06</date><risdate>2017</risdate><volume>95</volume><issue>3</issue><spage>742</spage><epage>762</epage><pages>742-762</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We show that a semibounded Wiener–Hopf quadratic form is closable in the space L2(R+) if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener–Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.</abstract><pub>London Mathematical Society ; Wiley</pub><doi>10.1112/jlms.12036</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2017-06, Vol.95 (3), p.742-762 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01342784v1 |
source | Access via Wiley Online Library |
subjects | 47A05 47A07 (primary) 47B25 47B35 (secondary) Analysis of PDEs Mathematics |
title | On semibounded Wiener–Hopf operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20semibounded%20Wiener%E2%80%93Hopf%20operators&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Yafaev,%20D.%20R.&rft.date=2017-06&rft.volume=95&rft.issue=3&rft.spage=742&rft.epage=762&rft.pages=742-762&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12036&rft_dat=%3Cwiley_hal_p%3EJLMS12036%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |