On the Fundamental Group Scheme of Rationally Chain-Connected Varieties
Let k be an algebraically closed field. Chambert-Loir proved that thé etale fundamental group of a proper normal rationally chain connected variety over k is finite. We prove that the fundamental group scheme of a proper normal rationally chain connected variety over k is finite too. In particular,...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2016-01, Vol.2016 (1), p.311-324 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 1 |
container_start_page | 311 |
container_title | International mathematics research notices |
container_volume | 2016 |
creator | Antei, Marco Biswas, Indranil |
description | Let k be an algebraically closed field. Chambert-Loir proved that thé etale fundamental group of a proper normal rationally chain connected variety over k is finite. We prove that the fundamental group scheme of a proper normal rationally chain connected variety over k is finite too. In particular, the fundamental group scheme of a Fano variety is finite. |
doi_str_mv | 10.1093/imrn/rnv132 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01342088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01342088v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-98a54b6f6e60f9494276cb481b64fcaf74004788d9f9e7de0533719dbf0e01ed3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFZP_oG9isS--9H9OJZgW6FQ8Ou6bJJ3SSTZlE0q9N_b0uJphmFmDg8hjwxeGFgxa7oUZyn-MsGvyIQpozPgUl8fPWiRacvNLbkbhh8ADsyICVltIx1rpMt9rHyHcfQtXaV-v6MfZY0d0j7Qdz82ffRte6B57ZuY5X2MWI5Y0W-fGhwbHO7JTfDtgA8XnZKv5etnvs4229VbvthkJVd8zKzxc1mooFBBsNJKrlVZSMMKJUPpg5YAUhtT2WBRVwhzITSzVREAgWElpuTp_Fv71u1S0_l0cL1v3HqxcacMmJAcjDkymJLnc7dM_TAkDP8DBu7Ey514uTMv8QfLB16W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Fundamental Group Scheme of Rationally Chain-Connected Varieties</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Antei, Marco ; Biswas, Indranil</creator><creatorcontrib>Antei, Marco ; Biswas, Indranil</creatorcontrib><description>Let k be an algebraically closed field. Chambert-Loir proved that thé etale fundamental group of a proper normal rationally chain connected variety over k is finite. We prove that the fundamental group scheme of a proper normal rationally chain connected variety over k is finite too. In particular, the fundamental group scheme of a Fano variety is finite.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnv132</identifier><language>eng</language><publisher>Oxford University Press (OUP)</publisher><subject>Mathematics</subject><ispartof>International mathematics research notices, 2016-01, Vol.2016 (1), p.311-324</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-98a54b6f6e60f9494276cb481b64fcaf74004788d9f9e7de0533719dbf0e01ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.univ-cotedazur.fr/hal-01342088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Antei, Marco</creatorcontrib><creatorcontrib>Biswas, Indranil</creatorcontrib><title>On the Fundamental Group Scheme of Rationally Chain-Connected Varieties</title><title>International mathematics research notices</title><description>Let k be an algebraically closed field. Chambert-Loir proved that thé etale fundamental group of a proper normal rationally chain connected variety over k is finite. We prove that the fundamental group scheme of a proper normal rationally chain connected variety over k is finite too. In particular, the fundamental group scheme of a Fano variety is finite.</description><subject>Mathematics</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRsFZP_oG9isS--9H9OJZgW6FQ8Ou6bJJ3SSTZlE0q9N_b0uJphmFmDg8hjwxeGFgxa7oUZyn-MsGvyIQpozPgUl8fPWiRacvNLbkbhh8ADsyICVltIx1rpMt9rHyHcfQtXaV-v6MfZY0d0j7Qdz82ffRte6B57ZuY5X2MWI5Y0W-fGhwbHO7JTfDtgA8XnZKv5etnvs4229VbvthkJVd8zKzxc1mooFBBsNJKrlVZSMMKJUPpg5YAUhtT2WBRVwhzITSzVREAgWElpuTp_Fv71u1S0_l0cL1v3HqxcacMmJAcjDkymJLnc7dM_TAkDP8DBu7Ey514uTMv8QfLB16W</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Antei, Marco</creator><creator>Biswas, Indranil</creator><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160101</creationdate><title>On the Fundamental Group Scheme of Rationally Chain-Connected Varieties</title><author>Antei, Marco ; Biswas, Indranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-98a54b6f6e60f9494276cb481b64fcaf74004788d9f9e7de0533719dbf0e01ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antei, Marco</creatorcontrib><creatorcontrib>Biswas, Indranil</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antei, Marco</au><au>Biswas, Indranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fundamental Group Scheme of Rationally Chain-Connected Varieties</atitle><jtitle>International mathematics research notices</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>1</issue><spage>311</spage><epage>324</epage><pages>311-324</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Let k be an algebraically closed field. Chambert-Loir proved that thé etale fundamental group of a proper normal rationally chain connected variety over k is finite. We prove that the fundamental group scheme of a proper normal rationally chain connected variety over k is finite too. In particular, the fundamental group scheme of a Fano variety is finite.</abstract><pub>Oxford University Press (OUP)</pub><doi>10.1093/imrn/rnv132</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2016-01, Vol.2016 (1), p.311-324 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01342088v1 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Mathematics |
title | On the Fundamental Group Scheme of Rationally Chain-Connected Varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fundamental%20Group%20Scheme%20of%20Rationally%20Chain-Connected%20Varieties&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Antei,%20Marco&rft.date=2016-01-01&rft.volume=2016&rft.issue=1&rft.spage=311&rft.epage=324&rft.pages=311-324&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnv132&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01342088v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |