Quantum metamaterials in the microwave and optical ranges

Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field modes in the system. The theoretical investigatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Quantum Technology 2016-02, Vol.3 (1), p.1, Article 2
Hauptverfasser: Zagoskin, Alexandre M, Felbacq, Didier, Rousseau, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title EPJ Quantum Technology
container_volume 3
creator Zagoskin, Alexandre M
Felbacq, Didier
Rousseau, Emmanuel
description Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.
doi_str_mv 10.1140/epjqt/s40507-016-0040-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01333403v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3975600101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-aa7e8e7ab82f0f147b076b4fe79292caabd75f32cb2a21faae128fcbee72a3ed3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOHS_wYJXXtSdk7RNezmGOmEggl6H0y5xHevHkmzOf29mRXbnVT543pdzHsZuEO4RE5jofr31E5dACjIGzGKABOLDGRtxLMJLZuL85H7Jxs6tAQCRpznKESted9T6XRM12lNDXtuaNi6q28ivdNTUle0-aa8japdR1_u6ok1kqf3Q7ppdmIDq8e95xd4fH95m83jx8vQ8my7iKkHpYyKpcy2pzLkBg4kswyBlYrQseMEronIpUyN4VXLiaIg08txUpdaSk9BLccXuht4VbVRv64bsl-qoVvPpQh3_AIUQCYg9BvZ2YHvbbXfaebXudrYN4ymUEjMuU4BAyYEKyzlntfmrRVBHrepHqxq0hv5MHbWqQ0jmQ9KFRJBgT_r_iX4DeVV_xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771627500</pqid></control><display><type>article</type><title>Quantum metamaterials in the microwave and optical ranges</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zagoskin, Alexandre M ; Felbacq, Didier ; Rousseau, Emmanuel</creator><creatorcontrib>Zagoskin, Alexandre M ; Felbacq, Didier ; Rousseau, Emmanuel</creatorcontrib><description>Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.</description><identifier>ISSN: 2196-0763</identifier><identifier>EISSN: 2196-0763</identifier><identifier>DOI: 10.1140/epjqt/s40507-016-0040-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Condensed Matter ; Nanotechnology and Microengineering ; Optics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Review ; Spintronics ; Superconductivity</subject><ispartof>EPJ Quantum Technology, 2016-02, Vol.3 (1), p.1, Article 2</ispartof><rights>Zagoskin et al. 2016</rights><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-aa7e8e7ab82f0f147b076b4fe79292caabd75f32cb2a21faae128fcbee72a3ed3</citedby><cites>FETCH-LOGICAL-c417t-aa7e8e7ab82f0f147b076b4fe79292caabd75f32cb2a21faae128fcbee72a3ed3</cites><orcidid>0000-0002-1189-5116 ; 0000-0003-3079-9055 ; 0000-0002-7972-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjqt/s40507-016-0040-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjqt/s40507-016-0040-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,780,784,792,864,885,27922,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01333403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagoskin, Alexandre M</creatorcontrib><creatorcontrib>Felbacq, Didier</creatorcontrib><creatorcontrib>Rousseau, Emmanuel</creatorcontrib><title>Quantum metamaterials in the microwave and optical ranges</title><title>EPJ Quantum Technology</title><addtitle>EPJ Quantum Technol</addtitle><description>Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.</description><subject>Condensed Matter</subject><subject>Nanotechnology and Microengineering</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Review</subject><subject>Spintronics</subject><subject>Superconductivity</subject><issn>2196-0763</issn><issn>2196-0763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOHS_wYJXXtSdk7RNezmGOmEggl6H0y5xHevHkmzOf29mRXbnVT543pdzHsZuEO4RE5jofr31E5dACjIGzGKABOLDGRtxLMJLZuL85H7Jxs6tAQCRpznKESted9T6XRM12lNDXtuaNi6q28ivdNTUle0-aa8japdR1_u6ok1kqf3Q7ppdmIDq8e95xd4fH95m83jx8vQ8my7iKkHpYyKpcy2pzLkBg4kswyBlYrQseMEronIpUyN4VXLiaIg08txUpdaSk9BLccXuht4VbVRv64bsl-qoVvPpQh3_AIUQCYg9BvZ2YHvbbXfaebXudrYN4ymUEjMuU4BAyYEKyzlntfmrRVBHrepHqxq0hv5MHbWqQ0jmQ9KFRJBgT_r_iX4DeVV_xw</recordid><startdate>20160220</startdate><enddate>20160220</enddate><creator>Zagoskin, Alexandre M</creator><creator>Felbacq, Didier</creator><creator>Rousseau, Emmanuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>EDP Sciences</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1189-5116</orcidid><orcidid>https://orcid.org/0000-0003-3079-9055</orcidid><orcidid>https://orcid.org/0000-0002-7972-1761</orcidid></search><sort><creationdate>20160220</creationdate><title>Quantum metamaterials in the microwave and optical ranges</title><author>Zagoskin, Alexandre M ; Felbacq, Didier ; Rousseau, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-aa7e8e7ab82f0f147b076b4fe79292caabd75f32cb2a21faae128fcbee72a3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed Matter</topic><topic>Nanotechnology and Microengineering</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Review</topic><topic>Spintronics</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagoskin, Alexandre M</creatorcontrib><creatorcontrib>Felbacq, Didier</creatorcontrib><creatorcontrib>Rousseau, Emmanuel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>EPJ Quantum Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagoskin, Alexandre M</au><au>Felbacq, Didier</au><au>Rousseau, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum metamaterials in the microwave and optical ranges</atitle><jtitle>EPJ Quantum Technology</jtitle><stitle>EPJ Quantum Technol</stitle><date>2016-02-20</date><risdate>2016</risdate><volume>3</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>2</artnum><issn>2196-0763</issn><eissn>2196-0763</eissn><abstract>Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjqt/s40507-016-0040-x</doi><orcidid>https://orcid.org/0000-0002-1189-5116</orcidid><orcidid>https://orcid.org/0000-0003-3079-9055</orcidid><orcidid>https://orcid.org/0000-0002-7972-1761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-0763
ispartof EPJ Quantum Technology, 2016-02, Vol.3 (1), p.1, Article 2
issn 2196-0763
2196-0763
language eng
recordid cdi_hal_primary_oai_HAL_hal_01333403v1
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Condensed Matter
Nanotechnology and Microengineering
Optics
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Review
Spintronics
Superconductivity
title Quantum metamaterials in the microwave and optical ranges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20metamaterials%20in%20the%20microwave%20and%20optical%20ranges&rft.jtitle=EPJ%20Quantum%20Technology&rft.au=Zagoskin,%20Alexandre%20M&rft.date=2016-02-20&rft.volume=3&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=2&rft.issn=2196-0763&rft.eissn=2196-0763&rft_id=info:doi/10.1140/epjqt/s40507-016-0040-x&rft_dat=%3Cproquest_hal_p%3E3975600101%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771627500&rft_id=info:pmid/&rfr_iscdi=true