Global impact of tropical cyclones on primary production

In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2016-05, Vol.30 (5), p.767-786
Hauptverfasser: Menkes, Christophe E., Lengaigne, Matthieu, Lévy, Marina, Ethé, Christian, Bopp, Laurent, Aumont, Olivier, Vincent, Emmanuel, Vialard, Jérôme, Jullien, Swen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 5
container_start_page 767
container_title Global biogeochemical cycles
container_volume 30
creator Menkes, Christophe E.
Lengaigne, Matthieu
Lévy, Marina
Ethé, Christian
Bopp, Laurent
Aumont, Olivier
Vincent, Emmanuel
Vialard, Jérôme
Jullien, Swen
description In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the vast majority of TCs induce a weak chlorophyll response, with only ~10% of induced blooms exceeding 0.1 mg m−3. The largest chlorophyll responses mostly occur within coastal regions, in contrast to the strongest cold wakes that generally occur farther offshore. To understand this decoupling, we analyze a coupled dynamical‐biogeochemical oceanic simulation forced by realistic wind vortices applied along observed TC tracks. The simulation displays a realistic spatial structure of TC‐induced blooms and its observed decoupling with TC cold wakes. In regions of strong TC energy input, the strongest cold wakes occur in regions of shallow thermocline (
doi_str_mv 10.1002/2015GB005214
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01331852v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911140876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5280-f41bc6f3b21595076743b5c2662e001f419b2f9018b6b729c261a94848e1b8373</originalsourceid><addsrcrecordid>eNp90cFKAzEQBuAgCtbqzQdY8KLg6sxskk2ObdFWKHjRc8jGLG7ZbuqmVfr2prSIePA0MPMx_MkwdolwhwB0T4BiOgYQhPyIDVBznmsifswGoJTMJRXylJ3FuABALoQeMDVtQ2XbrFmurFtnoc7WfVg1LrXc1rWh8zELXbbqm6Xtt6mGt41bN6E7Zye1baO_ONQhe318eJnM8vnz9GkymudWkIK85lg5WRcVodACSlnyohKOpCSfQqSxrqjWgKqSVUk6TdBqrrjyWKmiLIbsZr_33bbmEMME25jZaG52PcCiQCXoE5O93tsU82Pj49osm-h829rOh000qECVCCXfrb36Qxdh03fpJQY1IvIk5b-q1EKmH9aU1O1euT7E2Pv6JyeC2R3G_D5M4rTnX03rt_9aMx1PCDhB8Q1fhYkZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795619492</pqid></control><display><type>article</type><title>Global impact of tropical cyclones on primary production</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Menkes, Christophe E. ; Lengaigne, Matthieu ; Lévy, Marina ; Ethé, Christian ; Bopp, Laurent ; Aumont, Olivier ; Vincent, Emmanuel ; Vialard, Jérôme ; Jullien, Swen</creator><creatorcontrib>Menkes, Christophe E. ; Lengaigne, Matthieu ; Lévy, Marina ; Ethé, Christian ; Bopp, Laurent ; Aumont, Olivier ; Vincent, Emmanuel ; Vialard, Jérôme ; Jullien, Swen</creatorcontrib><description>In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the vast majority of TCs induce a weak chlorophyll response, with only ~10% of induced blooms exceeding 0.1 mg m−3. The largest chlorophyll responses mostly occur within coastal regions, in contrast to the strongest cold wakes that generally occur farther offshore. To understand this decoupling, we analyze a coupled dynamical‐biogeochemical oceanic simulation forced by realistic wind vortices applied along observed TC tracks. The simulation displays a realistic spatial structure of TC‐induced blooms and its observed decoupling with TC cold wakes. In regions of strong TC energy input, the strongest cold wakes occur in regions of shallow thermocline (&lt;60 m) and the strongest blooms in regions of shallow nitracline and/or subsurface chlorophyll maximum (&lt;60 m). Shallow thermoclines are found over many open ocean regions, while regions of shallow nitracline and/or subsurface chlorophyll maximum are most prominent in near‐coastal areas, explaining the spatial decoupling between the cold and bloom wakes. The overall TC contribution to annual primary production is weak and amounts to ~1%, except in a few limited areas (east Eurasian coast, South tropical Indian Ocean, Northern Australian coast, and Eastern Pacific Ocean in the TC‐prone region) where it can locally reach up to 20–30%. Nearly 80% of this TC‐induced annual primary production is the result of the biogeochemical response to the 30% strongest TCs. Key Points The impact of ~1000 cyclones on marine production is explored in a global model and observations Chlorophyll responses to cyclones are mostly coastal in contrast with SST responses and only ~10% of induced blooms exceed 0.1 mg m‐3 The global impact of cyclones on primary production is ~1% of the annual production but shows regional contrasts</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1002/2015GB005214</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Biogeochemistry ; Blooms ; Chlorophyll ; Chlorophylls ; Coastal zone ; Coasts ; Computer simulation ; coupled dynamical‐biogeochemical modeling ; Cyclones ; Data processing ; Decoupling ; Displays ; Earth Sciences ; Energy ; Environmental impact ; Fluid flow ; global impact ; Hurricanes ; Meteorology ; observations ; Oceanography ; Offshore ; Primary production ; Regions ; Satellite data ; Satellites ; Sciences of the Universe ; Sea surface ; Simulation ; Statistical analysis ; Statistical methods ; Surface temperature ; Temperature effects ; Thermocline ; Thermoclines ; Tropical climate ; Tropical cyclones ; Vortices ; Wakes ; Wind</subject><ispartof>Global biogeochemical cycles, 2016-05, Vol.30 (5), p.767-786</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5280-f41bc6f3b21595076743b5c2662e001f419b2f9018b6b729c261a94848e1b8373</citedby><cites>FETCH-LOGICAL-a5280-f41bc6f3b21595076743b5c2662e001f419b2f9018b6b729c261a94848e1b8373</cites><orcidid>0000-0003-2961-608X ; 0000-0003-4732-4953 ; 0000-0002-0044-036X ; 0000-0003-3954-506X ; 0000-0001-6876-3766 ; 0000-0002-1457-9696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GB005214$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GB005214$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01331852$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Menkes, Christophe E.</creatorcontrib><creatorcontrib>Lengaigne, Matthieu</creatorcontrib><creatorcontrib>Lévy, Marina</creatorcontrib><creatorcontrib>Ethé, Christian</creatorcontrib><creatorcontrib>Bopp, Laurent</creatorcontrib><creatorcontrib>Aumont, Olivier</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Vialard, Jérôme</creatorcontrib><creatorcontrib>Jullien, Swen</creatorcontrib><title>Global impact of tropical cyclones on primary production</title><title>Global biogeochemical cycles</title><description>In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the vast majority of TCs induce a weak chlorophyll response, with only ~10% of induced blooms exceeding 0.1 mg m−3. The largest chlorophyll responses mostly occur within coastal regions, in contrast to the strongest cold wakes that generally occur farther offshore. To understand this decoupling, we analyze a coupled dynamical‐biogeochemical oceanic simulation forced by realistic wind vortices applied along observed TC tracks. The simulation displays a realistic spatial structure of TC‐induced blooms and its observed decoupling with TC cold wakes. In regions of strong TC energy input, the strongest cold wakes occur in regions of shallow thermocline (&lt;60 m) and the strongest blooms in regions of shallow nitracline and/or subsurface chlorophyll maximum (&lt;60 m). Shallow thermoclines are found over many open ocean regions, while regions of shallow nitracline and/or subsurface chlorophyll maximum are most prominent in near‐coastal areas, explaining the spatial decoupling between the cold and bloom wakes. The overall TC contribution to annual primary production is weak and amounts to ~1%, except in a few limited areas (east Eurasian coast, South tropical Indian Ocean, Northern Australian coast, and Eastern Pacific Ocean in the TC‐prone region) where it can locally reach up to 20–30%. Nearly 80% of this TC‐induced annual primary production is the result of the biogeochemical response to the 30% strongest TCs. Key Points The impact of ~1000 cyclones on marine production is explored in a global model and observations Chlorophyll responses to cyclones are mostly coastal in contrast with SST responses and only ~10% of induced blooms exceed 0.1 mg m‐3 The global impact of cyclones on primary production is ~1% of the annual production but shows regional contrasts</description><subject>Biogeochemistry</subject><subject>Blooms</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Computer simulation</subject><subject>coupled dynamical‐biogeochemical modeling</subject><subject>Cyclones</subject><subject>Data processing</subject><subject>Decoupling</subject><subject>Displays</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Environmental impact</subject><subject>Fluid flow</subject><subject>global impact</subject><subject>Hurricanes</subject><subject>Meteorology</subject><subject>observations</subject><subject>Oceanography</subject><subject>Offshore</subject><subject>Primary production</subject><subject>Regions</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Surface temperature</subject><subject>Temperature effects</subject><subject>Thermocline</subject><subject>Thermoclines</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Vortices</subject><subject>Wakes</subject><subject>Wind</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90cFKAzEQBuAgCtbqzQdY8KLg6sxskk2ObdFWKHjRc8jGLG7ZbuqmVfr2prSIePA0MPMx_MkwdolwhwB0T4BiOgYQhPyIDVBznmsifswGoJTMJRXylJ3FuABALoQeMDVtQ2XbrFmurFtnoc7WfVg1LrXc1rWh8zELXbbqm6Xtt6mGt41bN6E7Zye1baO_ONQhe318eJnM8vnz9GkymudWkIK85lg5WRcVodACSlnyohKOpCSfQqSxrqjWgKqSVUk6TdBqrrjyWKmiLIbsZr_33bbmEMME25jZaG52PcCiQCXoE5O93tsU82Pj49osm-h829rOh000qECVCCXfrb36Qxdh03fpJQY1IvIk5b-q1EKmH9aU1O1euT7E2Pv6JyeC2R3G_D5M4rTnX03rt_9aMx1PCDhB8Q1fhYkZ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Menkes, Christophe E.</creator><creator>Lengaigne, Matthieu</creator><creator>Lévy, Marina</creator><creator>Ethé, Christian</creator><creator>Bopp, Laurent</creator><creator>Aumont, Olivier</creator><creator>Vincent, Emmanuel</creator><creator>Vialard, Jérôme</creator><creator>Jullien, Swen</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2961-608X</orcidid><orcidid>https://orcid.org/0000-0003-4732-4953</orcidid><orcidid>https://orcid.org/0000-0002-0044-036X</orcidid><orcidid>https://orcid.org/0000-0003-3954-506X</orcidid><orcidid>https://orcid.org/0000-0001-6876-3766</orcidid><orcidid>https://orcid.org/0000-0002-1457-9696</orcidid></search><sort><creationdate>201605</creationdate><title>Global impact of tropical cyclones on primary production</title><author>Menkes, Christophe E. ; Lengaigne, Matthieu ; Lévy, Marina ; Ethé, Christian ; Bopp, Laurent ; Aumont, Olivier ; Vincent, Emmanuel ; Vialard, Jérôme ; Jullien, Swen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5280-f41bc6f3b21595076743b5c2662e001f419b2f9018b6b729c261a94848e1b8373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biogeochemistry</topic><topic>Blooms</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Computer simulation</topic><topic>coupled dynamical‐biogeochemical modeling</topic><topic>Cyclones</topic><topic>Data processing</topic><topic>Decoupling</topic><topic>Displays</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Environmental impact</topic><topic>Fluid flow</topic><topic>global impact</topic><topic>Hurricanes</topic><topic>Meteorology</topic><topic>observations</topic><topic>Oceanography</topic><topic>Offshore</topic><topic>Primary production</topic><topic>Regions</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Surface temperature</topic><topic>Temperature effects</topic><topic>Thermocline</topic><topic>Thermoclines</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Vortices</topic><topic>Wakes</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menkes, Christophe E.</creatorcontrib><creatorcontrib>Lengaigne, Matthieu</creatorcontrib><creatorcontrib>Lévy, Marina</creatorcontrib><creatorcontrib>Ethé, Christian</creatorcontrib><creatorcontrib>Bopp, Laurent</creatorcontrib><creatorcontrib>Aumont, Olivier</creatorcontrib><creatorcontrib>Vincent, Emmanuel</creatorcontrib><creatorcontrib>Vialard, Jérôme</creatorcontrib><creatorcontrib>Jullien, Swen</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menkes, Christophe E.</au><au>Lengaigne, Matthieu</au><au>Lévy, Marina</au><au>Ethé, Christian</au><au>Bopp, Laurent</au><au>Aumont, Olivier</au><au>Vincent, Emmanuel</au><au>Vialard, Jérôme</au><au>Jullien, Swen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global impact of tropical cyclones on primary production</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2016-05</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>767</spage><epage>786</epage><pages>767-786</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><abstract>In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the vast majority of TCs induce a weak chlorophyll response, with only ~10% of induced blooms exceeding 0.1 mg m−3. The largest chlorophyll responses mostly occur within coastal regions, in contrast to the strongest cold wakes that generally occur farther offshore. To understand this decoupling, we analyze a coupled dynamical‐biogeochemical oceanic simulation forced by realistic wind vortices applied along observed TC tracks. The simulation displays a realistic spatial structure of TC‐induced blooms and its observed decoupling with TC cold wakes. In regions of strong TC energy input, the strongest cold wakes occur in regions of shallow thermocline (&lt;60 m) and the strongest blooms in regions of shallow nitracline and/or subsurface chlorophyll maximum (&lt;60 m). Shallow thermoclines are found over many open ocean regions, while regions of shallow nitracline and/or subsurface chlorophyll maximum are most prominent in near‐coastal areas, explaining the spatial decoupling between the cold and bloom wakes. The overall TC contribution to annual primary production is weak and amounts to ~1%, except in a few limited areas (east Eurasian coast, South tropical Indian Ocean, Northern Australian coast, and Eastern Pacific Ocean in the TC‐prone region) where it can locally reach up to 20–30%. Nearly 80% of this TC‐induced annual primary production is the result of the biogeochemical response to the 30% strongest TCs. Key Points The impact of ~1000 cyclones on marine production is explored in a global model and observations Chlorophyll responses to cyclones are mostly coastal in contrast with SST responses and only ~10% of induced blooms exceed 0.1 mg m‐3 The global impact of cyclones on primary production is ~1% of the annual production but shows regional contrasts</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GB005214</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2961-608X</orcidid><orcidid>https://orcid.org/0000-0003-4732-4953</orcidid><orcidid>https://orcid.org/0000-0002-0044-036X</orcidid><orcidid>https://orcid.org/0000-0003-3954-506X</orcidid><orcidid>https://orcid.org/0000-0001-6876-3766</orcidid><orcidid>https://orcid.org/0000-0002-1457-9696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2016-05, Vol.30 (5), p.767-786
issn 0886-6236
1944-9224
1944-8224
language eng
recordid cdi_hal_primary_oai_HAL_hal_01331852v1
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biogeochemistry
Blooms
Chlorophyll
Chlorophylls
Coastal zone
Coasts
Computer simulation
coupled dynamical‐biogeochemical modeling
Cyclones
Data processing
Decoupling
Displays
Earth Sciences
Energy
Environmental impact
Fluid flow
global impact
Hurricanes
Meteorology
observations
Oceanography
Offshore
Primary production
Regions
Satellite data
Satellites
Sciences of the Universe
Sea surface
Simulation
Statistical analysis
Statistical methods
Surface temperature
Temperature effects
Thermocline
Thermoclines
Tropical climate
Tropical cyclones
Vortices
Wakes
Wind
title Global impact of tropical cyclones on primary production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20impact%20of%20tropical%20cyclones%20on%20primary%20production&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Menkes,%20Christophe%20E.&rft.date=2016-05&rft.volume=30&rft.issue=5&rft.spage=767&rft.epage=786&rft.pages=767-786&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1002/2015GB005214&rft_dat=%3Cproquest_hal_p%3E1911140876%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795619492&rft_id=info:pmid/&rfr_iscdi=true