Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere

The objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D /2 at Re = 50,000. In the expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2016-07, Vol.97 (1), p.79-119
Hauptverfasser: Wood, Jens Nikolas, De Nayer, Guillaume, Schmidt, Stephan, Breuer, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 79
container_title Flow, turbulence and combustion
container_volume 97
creator Wood, Jens Nikolas
De Nayer, Guillaume
Schmidt, Stephan
Breuer, Michael
description The objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D /2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement.
doi_str_mv 10.1007/s10494-015-9690-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01328107v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880018836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d2f64b28a61a533b476d681409b79a7cb54a387cb9a76a891879ac5f5fa0dea23</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLg5w_wlqMeopOmSZOjyOoKC4If5zBt091K29SkVfffm7Xi0UsmM_PeYx4vSc4ZXDGA_DowyHRGgQmqpQYq9pIjJnJOmVb5fvxzJalkKjtMjkN4AwCZgz5KusXXYH3T2X7Eljz0HzaMzRrHxvUE-4qs0K8tXVTVljw33dTOG1eTcWPJy-SLqY1Ucte6TzJgGAmS5865cfPDfmrWTUWWtmvCsLHeniYHNbbBnv3Wk-T1bvFyu6Srx_uH25sVLblWI63SWmZFqlAyFJwXWS4rqVgGusg15mUhMuQq1thIVJqpOC5FLWqEymLKT5LLWXeDrRmiPfRb47Axy5uV2c2A8VQxyD9YxF7M2MG79ynaN_Ha0rYt9tZNwTClAOLDZYSyGVp6F4K39Z82A7OLwcwxRHlhdjEYETnpzAkR26-tN29u8n10_w_pGwN6io8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880018836</pqid></control><display><type>article</type><title>Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wood, Jens Nikolas ; De Nayer, Guillaume ; Schmidt, Stephan ; Breuer, Michael</creator><creatorcontrib>Wood, Jens Nikolas ; De Nayer, Guillaume ; Schmidt, Stephan ; Breuer, Michael</creatorcontrib><description>The objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D /2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-015-9690-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computational fluid dynamics ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Engineering Thermodynamics ; Fluid Dynamics ; Fluid mechanics ; Fluid- and Aerodynamics ; Fluids mechanics ; Heat and Mass Transfer ; Inflow ; Large eddy simulation ; Mathematical models ; Mechanics ; Navier-Stokes equations ; Physics ; Turbulence ; Turbulent flow ; Upstream</subject><ispartof>Flow, turbulence and combustion, 2016-07, Vol.97 (1), p.79-119</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d2f64b28a61a533b476d681409b79a7cb54a387cb9a76a891879ac5f5fa0dea23</citedby><cites>FETCH-LOGICAL-c398t-d2f64b28a61a533b476d681409b79a7cb54a387cb9a76a891879ac5f5fa0dea23</cites><orcidid>0000-0003-1208-4451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-015-9690-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-015-9690-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01328107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, Jens Nikolas</creatorcontrib><creatorcontrib>De Nayer, Guillaume</creatorcontrib><creatorcontrib>Schmidt, Stephan</creatorcontrib><creatorcontrib>Breuer, Michael</creatorcontrib><title>Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>The objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D /2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement.</description><subject>Automotive Engineering</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Engineering Thermodynamics</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fluids mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Inflow</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Upstream</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQLaLg5w_wlqMeopOmSZOjyOoKC4If5zBt091K29SkVfffm7Xi0UsmM_PeYx4vSc4ZXDGA_DowyHRGgQmqpQYq9pIjJnJOmVb5fvxzJalkKjtMjkN4AwCZgz5KusXXYH3T2X7Eljz0HzaMzRrHxvUE-4qs0K8tXVTVljw33dTOG1eTcWPJy-SLqY1Ucte6TzJgGAmS5865cfPDfmrWTUWWtmvCsLHeniYHNbbBnv3Wk-T1bvFyu6Srx_uH25sVLblWI63SWmZFqlAyFJwXWS4rqVgGusg15mUhMuQq1thIVJqpOC5FLWqEymLKT5LLWXeDrRmiPfRb47Axy5uV2c2A8VQxyD9YxF7M2MG79ynaN_Ha0rYt9tZNwTClAOLDZYSyGVp6F4K39Z82A7OLwcwxRHlhdjEYETnpzAkR26-tN29u8n10_w_pGwN6io8</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wood, Jens Nikolas</creator><creator>De Nayer, Guillaume</creator><creator>Schmidt, Stephan</creator><creator>Breuer, Michael</creator><general>Springer Netherlands</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1208-4451</orcidid></search><sort><creationdate>20160701</creationdate><title>Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere</title><author>Wood, Jens Nikolas ; De Nayer, Guillaume ; Schmidt, Stephan ; Breuer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d2f64b28a61a533b476d681409b79a7cb54a387cb9a76a891879ac5f5fa0dea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Engineering Thermodynamics</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fluids mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Inflow</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Jens Nikolas</creatorcontrib><creatorcontrib>De Nayer, Guillaume</creatorcontrib><creatorcontrib>Schmidt, Stephan</creatorcontrib><creatorcontrib>Breuer, Michael</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Jens Nikolas</au><au>De Nayer, Guillaume</au><au>Schmidt, Stephan</au><au>Breuer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>97</volume><issue>1</issue><spage>79</spage><epage>119</epage><pages>79-119</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>The objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D /2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-015-9690-5</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-1208-4451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2016-07, Vol.97 (1), p.79-119
issn 1386-6184
1573-1987
language eng
recordid cdi_hal_primary_oai_HAL_hal_01328107v1
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Computational fluid dynamics
Engineering
Engineering Fluid Dynamics
Engineering Sciences
Engineering Thermodynamics
Fluid Dynamics
Fluid mechanics
Fluid- and Aerodynamics
Fluids mechanics
Heat and Mass Transfer
Inflow
Large eddy simulation
Mathematical models
Mechanics
Navier-Stokes equations
Physics
Turbulence
Turbulent flow
Upstream
title Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20and%20Large-Eddy%20Simulation%20of%20the%20Turbulent%20Flow%20past%20a%20Smooth%20and%20Rigid%20Hemisphere&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Wood,%20Jens%20Nikolas&rft.date=2016-07-01&rft.volume=97&rft.issue=1&rft.spage=79&rft.epage=119&rft.pages=79-119&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-015-9690-5&rft_dat=%3Cproquest_hal_p%3E1880018836%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880018836&rft_id=info:pmid/&rfr_iscdi=true