Diffusion and inpainting of reflectance and height LiDAR orthoimages
This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the proposed metho...
Gespeichert in:
Veröffentlicht in: | Computer vision and image understanding 2019-02, Vol.179, p.31-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | |
container_start_page | 31 |
container_title | Computer vision and image understanding |
container_volume | 179 |
creator | Biasutti, Pierre Aujol, Jean-François Brédif, Mathieu Bugeau, Aurélie |
description | This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the proposed method cost-effectively generates a reflectance channel that is easily interpretable by human operators without relying on any optical acquisition, calibration and registration. Moreover, it commonly achieves very high resolutions (1cm2 per pixel), thanks to the typical sampling density of static or mobile LiDAR scans.
Compared to orthoimages generated from aerial datasets, the proposed LiDAR orthoimages are acquired from the ground level and thus do not suffer occlusions from hovering objects (trees, tunnels and bridges), enabling their use in a number of urban applications such as road network monitoring and management, as well as precise mapping of the public space e.g. for accessibility applications or management of underground networks.
Its generation and usability however faces two issues : (i) the inhomogeneous sampling density of LiDAR point clouds and (ii) the presence of masked areas (holes) behind occluders, which include, in a urban context, cars, tree trunks, poles or pedestrians (i) is addressed by first projecting the point cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and height images from which dense images estimated using a joint anisotropic diffusion of the height and reflectance channels. (ii) LiDAR shadow areas are detected by analyzing the diffusion results so that they can be inpainted using an examplar-based method, guided by an alignment prior.
Results on real mobile and static acquisition data demonstrate the effectiveness of the proposed pipeline in generating a very high resolution LiDAR orthoimage of reflectance and height while filling holes of various sizes in a visually satisfying way.
•Fully automatic pipeline for Orthoimage and Digital Surface Model generation from LiDAR point clouds.•Joint reflectance and height diffusion and inpainting methodology.•Generated orthoimages do not suffer occlusions from hovering objects and reach subcentimetric accuracy with modern MMS. |
doi_str_mv | 10.1016/j.cviu.2018.10.011 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01322822v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314218304302</els_id><sourcerecordid>S1077314218304302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-b6b53be878761422466f95084878f223d5382510364ebf20dc4890684a0358d03</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKe--tB686dpCr6MTZ1QEETBt5CmyZoxm5HUgd_e1ImPPuVy7jlJzg-hawwFBsxvt4U-uM-CABZJKADjEzTDUENOaPl-Os1VlVPMyDm6iHELycFqPEOrlbP2Mzo_ZGroMjfslRtGN2wyb7Ng7M7oUQ3a_Gx74zb9mDVutXjJfBh77z7UxsRLdGbVLpqr33OO3h7uX5frvHl-fFoumlzTSox5y9uStkZUouLpJ4RxbusSBEuKJYR2JRWkxEA5M60l0GkmauCCKaCl6IDO0c3x3l7t5D6kx8OX9MrJ9aKRkwaYEiIIOdDkJUevDj7G1OQvgEFOzORWTszkxGzSEpEUujuGTGpxcCbIqJ1J9TsXEgjZefdf_BuAqHKO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffusion and inpainting of reflectance and height LiDAR orthoimages</title><source>Elsevier ScienceDirect Journals</source><creator>Biasutti, Pierre ; Aujol, Jean-François ; Brédif, Mathieu ; Bugeau, Aurélie</creator><creatorcontrib>Biasutti, Pierre ; Aujol, Jean-François ; Brédif, Mathieu ; Bugeau, Aurélie</creatorcontrib><description>This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the proposed method cost-effectively generates a reflectance channel that is easily interpretable by human operators without relying on any optical acquisition, calibration and registration. Moreover, it commonly achieves very high resolutions (1cm2 per pixel), thanks to the typical sampling density of static or mobile LiDAR scans.
Compared to orthoimages generated from aerial datasets, the proposed LiDAR orthoimages are acquired from the ground level and thus do not suffer occlusions from hovering objects (trees, tunnels and bridges), enabling their use in a number of urban applications such as road network monitoring and management, as well as precise mapping of the public space e.g. for accessibility applications or management of underground networks.
Its generation and usability however faces two issues : (i) the inhomogeneous sampling density of LiDAR point clouds and (ii) the presence of masked areas (holes) behind occluders, which include, in a urban context, cars, tree trunks, poles or pedestrians (i) is addressed by first projecting the point cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and height images from which dense images estimated using a joint anisotropic diffusion of the height and reflectance channels. (ii) LiDAR shadow areas are detected by analyzing the diffusion results so that they can be inpainted using an examplar-based method, guided by an alignment prior.
Results on real mobile and static acquisition data demonstrate the effectiveness of the proposed pipeline in generating a very high resolution LiDAR orthoimage of reflectance and height while filling holes of various sizes in a visually satisfying way.
•Fully automatic pipeline for Orthoimage and Digital Surface Model generation from LiDAR point clouds.•Joint reflectance and height diffusion and inpainting methodology.•Generated orthoimages do not suffer occlusions from hovering objects and reach subcentimetric accuracy with modern MMS.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2018.10.011</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition ; Inpainting ; LiDAR ; Mobile mapping ; Orthoimage ; Point cloud ; Variational</subject><ispartof>Computer vision and image understanding, 2019-02, Vol.179, p.31-40</ispartof><rights>2018 Elsevier Inc.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-b6b53be878761422466f95084878f223d5382510364ebf20dc4890684a0358d03</citedby><cites>FETCH-LOGICAL-c378t-b6b53be878761422466f95084878f223d5382510364ebf20dc4890684a0358d03</cites><orcidid>0000-0001-6716-0509 ; 0000-0002-4858-4944 ; 0000-0003-0228-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1077314218304302$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01322822$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biasutti, Pierre</creatorcontrib><creatorcontrib>Aujol, Jean-François</creatorcontrib><creatorcontrib>Brédif, Mathieu</creatorcontrib><creatorcontrib>Bugeau, Aurélie</creatorcontrib><title>Diffusion and inpainting of reflectance and height LiDAR orthoimages</title><title>Computer vision and image understanding</title><description>This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the proposed method cost-effectively generates a reflectance channel that is easily interpretable by human operators without relying on any optical acquisition, calibration and registration. Moreover, it commonly achieves very high resolutions (1cm2 per pixel), thanks to the typical sampling density of static or mobile LiDAR scans.
Compared to orthoimages generated from aerial datasets, the proposed LiDAR orthoimages are acquired from the ground level and thus do not suffer occlusions from hovering objects (trees, tunnels and bridges), enabling their use in a number of urban applications such as road network monitoring and management, as well as precise mapping of the public space e.g. for accessibility applications or management of underground networks.
Its generation and usability however faces two issues : (i) the inhomogeneous sampling density of LiDAR point clouds and (ii) the presence of masked areas (holes) behind occluders, which include, in a urban context, cars, tree trunks, poles or pedestrians (i) is addressed by first projecting the point cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and height images from which dense images estimated using a joint anisotropic diffusion of the height and reflectance channels. (ii) LiDAR shadow areas are detected by analyzing the diffusion results so that they can be inpainted using an examplar-based method, guided by an alignment prior.
Results on real mobile and static acquisition data demonstrate the effectiveness of the proposed pipeline in generating a very high resolution LiDAR orthoimage of reflectance and height while filling holes of various sizes in a visually satisfying way.
•Fully automatic pipeline for Orthoimage and Digital Surface Model generation from LiDAR point clouds.•Joint reflectance and height diffusion and inpainting methodology.•Generated orthoimages do not suffer occlusions from hovering objects and reach subcentimetric accuracy with modern MMS.</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Inpainting</subject><subject>LiDAR</subject><subject>Mobile mapping</subject><subject>Orthoimage</subject><subject>Point cloud</subject><subject>Variational</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKe--tB686dpCr6MTZ1QEETBt5CmyZoxm5HUgd_e1ImPPuVy7jlJzg-hawwFBsxvt4U-uM-CABZJKADjEzTDUENOaPl-Os1VlVPMyDm6iHELycFqPEOrlbP2Mzo_ZGroMjfslRtGN2wyb7Ng7M7oUQ3a_Gx74zb9mDVutXjJfBh77z7UxsRLdGbVLpqr33OO3h7uX5frvHl-fFoumlzTSox5y9uStkZUouLpJ4RxbusSBEuKJYR2JRWkxEA5M60l0GkmauCCKaCl6IDO0c3x3l7t5D6kx8OX9MrJ9aKRkwaYEiIIOdDkJUevDj7G1OQvgEFOzORWTszkxGzSEpEUujuGTGpxcCbIqJ1J9TsXEgjZefdf_BuAqHKO</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Biasutti, Pierre</creator><creator>Aujol, Jean-François</creator><creator>Brédif, Mathieu</creator><creator>Bugeau, Aurélie</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6716-0509</orcidid><orcidid>https://orcid.org/0000-0002-4858-4944</orcidid><orcidid>https://orcid.org/0000-0003-0228-1232</orcidid></search><sort><creationdate>20190201</creationdate><title>Diffusion and inpainting of reflectance and height LiDAR orthoimages</title><author>Biasutti, Pierre ; Aujol, Jean-François ; Brédif, Mathieu ; Bugeau, Aurélie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-b6b53be878761422466f95084878f223d5382510364ebf20dc4890684a0358d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Inpainting</topic><topic>LiDAR</topic><topic>Mobile mapping</topic><topic>Orthoimage</topic><topic>Point cloud</topic><topic>Variational</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biasutti, Pierre</creatorcontrib><creatorcontrib>Aujol, Jean-François</creatorcontrib><creatorcontrib>Brédif, Mathieu</creatorcontrib><creatorcontrib>Bugeau, Aurélie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biasutti, Pierre</au><au>Aujol, Jean-François</au><au>Brédif, Mathieu</au><au>Bugeau, Aurélie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and inpainting of reflectance and height LiDAR orthoimages</atitle><jtitle>Computer vision and image understanding</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>179</volume><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the proposed method cost-effectively generates a reflectance channel that is easily interpretable by human operators without relying on any optical acquisition, calibration and registration. Moreover, it commonly achieves very high resolutions (1cm2 per pixel), thanks to the typical sampling density of static or mobile LiDAR scans.
Compared to orthoimages generated from aerial datasets, the proposed LiDAR orthoimages are acquired from the ground level and thus do not suffer occlusions from hovering objects (trees, tunnels and bridges), enabling their use in a number of urban applications such as road network monitoring and management, as well as precise mapping of the public space e.g. for accessibility applications or management of underground networks.
Its generation and usability however faces two issues : (i) the inhomogeneous sampling density of LiDAR point clouds and (ii) the presence of masked areas (holes) behind occluders, which include, in a urban context, cars, tree trunks, poles or pedestrians (i) is addressed by first projecting the point cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and height images from which dense images estimated using a joint anisotropic diffusion of the height and reflectance channels. (ii) LiDAR shadow areas are detected by analyzing the diffusion results so that they can be inpainted using an examplar-based method, guided by an alignment prior.
Results on real mobile and static acquisition data demonstrate the effectiveness of the proposed pipeline in generating a very high resolution LiDAR orthoimage of reflectance and height while filling holes of various sizes in a visually satisfying way.
•Fully automatic pipeline for Orthoimage and Digital Surface Model generation from LiDAR point clouds.•Joint reflectance and height diffusion and inpainting methodology.•Generated orthoimages do not suffer occlusions from hovering objects and reach subcentimetric accuracy with modern MMS.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2018.10.011</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6716-0509</orcidid><orcidid>https://orcid.org/0000-0002-4858-4944</orcidid><orcidid>https://orcid.org/0000-0003-0228-1232</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2019-02, Vol.179, p.31-40 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01322822v3 |
source | Elsevier ScienceDirect Journals |
subjects | Computer Science Computer Vision and Pattern Recognition Inpainting LiDAR Mobile mapping Orthoimage Point cloud Variational |
title | Diffusion and inpainting of reflectance and height LiDAR orthoimages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20inpainting%20of%20reflectance%20and%20height%20LiDAR%20orthoimages&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Biasutti,%20Pierre&rft.date=2019-02-01&rft.volume=179&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2018.10.011&rft_dat=%3Celsevier_hal_p%3ES1077314218304302%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1077314218304302&rfr_iscdi=true |