Throughput maximization in multiprocessor speed-scaling
In the classical energy minimization problem, introduced in [24], we are given a set of n jobs each one characterized by its release date, its deadline, its processing volume and we aim to find a feasible schedule of the jobs on a single speed-scalable machine so that the total energy consumption is...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2016-05, Vol.630, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the classical energy minimization problem, introduced in [24], we are given a set of n jobs each one characterized by its release date, its deadline, its processing volume and we aim to find a feasible schedule of the jobs on a single speed-scalable machine so that the total energy consumption is minimized. Here, we study the throughput maximization version of the problem where we are given a budget of energy E and where every job has also a value. Our goal is to determine a feasible schedule maximizing the (weighted) throughput of the jobs that are executed between their respective release dates and deadlines. We first consider the preemptive non-migratory multiprocessor case in a fully heterogeneous environment in which every job has a machine-dependent release date, deadline and processing volume and every machine obeys to a different speed-to-power function. We present a polynomial time greedy algorithm based on the primal-dual scheme that approximates the optimum solution within a factor depending on the energy functions (the factor is constant for typical energy functions of form P(z)=zα). Then, we focus on the non-preemptive case for which we consider a fixed number of identical parallel machines and two important families of instances: (1) equal processing volume jobs; and (2) agreeable jobs. For both cases we present optimal pseudo-polynomial-time algorithms. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2016.03.020 |