Throughput maximization in multiprocessor speed-scaling

In the classical energy minimization problem, introduced in [24], we are given a set of n jobs each one characterized by its release date, its deadline, its processing volume and we aim to find a feasible schedule of the jobs on a single speed-scalable machine so that the total energy consumption is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2016-05, Vol.630, p.1-12
Hauptverfasser: Angel, Eric, Bampis, Evripidis, Chau, Vincent, Kim Thang, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the classical energy minimization problem, introduced in [24], we are given a set of n jobs each one characterized by its release date, its deadline, its processing volume and we aim to find a feasible schedule of the jobs on a single speed-scalable machine so that the total energy consumption is minimized. Here, we study the throughput maximization version of the problem where we are given a budget of energy E and where every job has also a value. Our goal is to determine a feasible schedule maximizing the (weighted) throughput of the jobs that are executed between their respective release dates and deadlines. We first consider the preemptive non-migratory multiprocessor case in a fully heterogeneous environment in which every job has a machine-dependent release date, deadline and processing volume and every machine obeys to a different speed-to-power function. We present a polynomial time greedy algorithm based on the primal-dual scheme that approximates the optimum solution within a factor depending on the energy functions (the factor is constant for typical energy functions of form P(z)=zα). Then, we focus on the non-preemptive case for which we consider a fixed number of identical parallel machines and two important families of instances: (1) equal processing volume jobs; and (2) agreeable jobs. For both cases we present optimal pseudo-polynomial-time algorithms.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2016.03.020