Robust conditional Weibull-type estimation
We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based o...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2015-06, Vol.67 (3), p.479-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 3 |
container_start_page | 479 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 67 |
creator | Goegebeur, Yuri Guillou, Armelle Rietsch, Théo |
description | We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment. |
doi_str_mv | 10.1007/s10463-014-0458-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01312924v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685789986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeBLypE782fJnkcok4YCKL4GNIu0Y6unU0r7NubUhERfAqc_M695x5CThGuEEBdRwSRcQooKAipqdkjE5SKUQOS7ZMJAAPKk3JIjmJcAwBnnE3I5VOT97GbFU29KruyqV01e_Vl3lcV7XZbP_OxKzdu-DkmB8FV0Z98v1Pycnf7fLOgy8f7h5v5khaS8Y561GACcyIYFZxiBVsp57TWvMgROZOrHIOCXOQsKBRJ1zqwLOO540IHxafkYpz77iq7bdP2dmcbV9rFfGkHDZAjM0x8YmLPR3bbNh99ymo3ZSx8VbnaN320mGmptDE6S-jZH3Td9G26d6CUlAY4H5bjSBVtE2Prw08CBDs0bcemUwhhh6atSR42emJi6zff_pr8r-kLGwp9pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675590337</pqid></control><display><type>article</type><title>Robust conditional Weibull-type estimation</title><source>Springer Online Journals【Remote access available】</source><source>EZB Free E-Journals</source><creator>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</creator><creatorcontrib>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</creatorcontrib><description>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-014-0458-9</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Asymptotic properties ; Coefficients ; Density ; Economics ; Estimating techniques ; Estimators ; Finance ; Insurance ; Management ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Normal distribution ; Samples ; Simulation ; Statistical analysis ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.479-514</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2014</rights><rights>The Institute of Statistical Mathematics, Tokyo 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</citedby><cites>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-014-0458-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-014-0458-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01312924$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goegebeur, Yuri</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rietsch, Théo</creatorcontrib><title>Robust conditional Weibull-type estimation</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</description><subject>Asymptotic properties</subject><subject>Coefficients</subject><subject>Density</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Normal distribution</subject><subject>Samples</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeBLypE782fJnkcok4YCKL4GNIu0Y6unU0r7NubUhERfAqc_M695x5CThGuEEBdRwSRcQooKAipqdkjE5SKUQOS7ZMJAAPKk3JIjmJcAwBnnE3I5VOT97GbFU29KruyqV01e_Vl3lcV7XZbP_OxKzdu-DkmB8FV0Z98v1Pycnf7fLOgy8f7h5v5khaS8Y561GACcyIYFZxiBVsp57TWvMgROZOrHIOCXOQsKBRJ1zqwLOO540IHxafkYpz77iq7bdP2dmcbV9rFfGkHDZAjM0x8YmLPR3bbNh99ymo3ZSx8VbnaN320mGmptDE6S-jZH3Td9G26d6CUlAY4H5bjSBVtE2Prw08CBDs0bcemUwhhh6atSR42emJi6zff_pr8r-kLGwp9pg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Goegebeur, Yuri</creator><creator>Guillou, Armelle</creator><creator>Rietsch, Théo</creator><general>Springer Japan</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150601</creationdate><title>Robust conditional Weibull-type estimation</title><author>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>Coefficients</topic><topic>Density</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Normal distribution</topic><topic>Samples</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goegebeur, Yuri</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rietsch, Théo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goegebeur, Yuri</au><au>Guillou, Armelle</au><au>Rietsch, Théo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust conditional Weibull-type estimation</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>67</volume><issue>3</issue><spage>479</spage><epage>514</epage><pages>479-514</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-014-0458-9</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.479-514 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01312924v1 |
source | Springer Online Journals【Remote access available】; EZB Free E-Journals |
subjects | Asymptotic properties Coefficients Density Economics Estimating techniques Estimators Finance Insurance Management Mathematical analysis Mathematics Mathematics and Statistics Maximum likelihood method Normal distribution Samples Simulation Statistical analysis Statistics Statistics for Business Studies |
title | Robust conditional Weibull-type estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20conditional%20Weibull-type%20estimation&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Goegebeur,%20Yuri&rft.date=2015-06-01&rft.volume=67&rft.issue=3&rft.spage=479&rft.epage=514&rft.pages=479-514&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-014-0458-9&rft_dat=%3Cproquest_hal_p%3E1685789986%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675590337&rft_id=info:pmid/&rfr_iscdi=true |