Robust conditional Weibull-type estimation

We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2015-06, Vol.67 (3), p.479-514
Hauptverfasser: Goegebeur, Yuri, Guillou, Armelle, Rietsch, Théo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 3
container_start_page 479
container_title Annals of the Institute of Statistical Mathematics
container_volume 67
creator Goegebeur, Yuri
Guillou, Armelle
Rietsch, Théo
description We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.
doi_str_mv 10.1007/s10463-014-0458-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01312924v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685789986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeBLypE782fJnkcok4YCKL4GNIu0Y6unU0r7NubUhERfAqc_M695x5CThGuEEBdRwSRcQooKAipqdkjE5SKUQOS7ZMJAAPKk3JIjmJcAwBnnE3I5VOT97GbFU29KruyqV01e_Vl3lcV7XZbP_OxKzdu-DkmB8FV0Z98v1Pycnf7fLOgy8f7h5v5khaS8Y561GACcyIYFZxiBVsp57TWvMgROZOrHIOCXOQsKBRJ1zqwLOO540IHxafkYpz77iq7bdP2dmcbV9rFfGkHDZAjM0x8YmLPR3bbNh99ymo3ZSx8VbnaN320mGmptDE6S-jZH3Td9G26d6CUlAY4H5bjSBVtE2Prw08CBDs0bcemUwhhh6atSR42emJi6zff_pr8r-kLGwp9pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675590337</pqid></control><display><type>article</type><title>Robust conditional Weibull-type estimation</title><source>Springer Online Journals【Remote access available】</source><source>EZB Free E-Journals</source><creator>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</creator><creatorcontrib>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</creatorcontrib><description>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-014-0458-9</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Asymptotic properties ; Coefficients ; Density ; Economics ; Estimating techniques ; Estimators ; Finance ; Insurance ; Management ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Maximum likelihood method ; Normal distribution ; Samples ; Simulation ; Statistical analysis ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.479-514</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2014</rights><rights>The Institute of Statistical Mathematics, Tokyo 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</citedby><cites>FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-014-0458-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-014-0458-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01312924$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goegebeur, Yuri</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rietsch, Théo</creatorcontrib><title>Robust conditional Weibull-type estimation</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</description><subject>Asymptotic properties</subject><subject>Coefficients</subject><subject>Density</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood method</subject><subject>Normal distribution</subject><subject>Samples</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeBLypE782fJnkcok4YCKL4GNIu0Y6unU0r7NubUhERfAqc_M695x5CThGuEEBdRwSRcQooKAipqdkjE5SKUQOS7ZMJAAPKk3JIjmJcAwBnnE3I5VOT97GbFU29KruyqV01e_Vl3lcV7XZbP_OxKzdu-DkmB8FV0Z98v1Pycnf7fLOgy8f7h5v5khaS8Y561GACcyIYFZxiBVsp57TWvMgROZOrHIOCXOQsKBRJ1zqwLOO540IHxafkYpz77iq7bdP2dmcbV9rFfGkHDZAjM0x8YmLPR3bbNh99ymo3ZSx8VbnaN320mGmptDE6S-jZH3Td9G26d6CUlAY4H5bjSBVtE2Prw08CBDs0bcemUwhhh6atSR42emJi6zff_pr8r-kLGwp9pg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Goegebeur, Yuri</creator><creator>Guillou, Armelle</creator><creator>Rietsch, Théo</creator><general>Springer Japan</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150601</creationdate><title>Robust conditional Weibull-type estimation</title><author>Goegebeur, Yuri ; Guillou, Armelle ; Rietsch, Théo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-e1809f2a4f97fa72c2d7aa8883cb11325db1f70b4b2f71488388f2663ba348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>Coefficients</topic><topic>Density</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood method</topic><topic>Normal distribution</topic><topic>Samples</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goegebeur, Yuri</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rietsch, Théo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goegebeur, Yuri</au><au>Guillou, Armelle</au><au>Rietsch, Théo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust conditional Weibull-type estimation</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>67</volume><issue>3</issue><spage>479</spage><epage>514</epage><pages>479-514</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>We study nonparametric robust tail coefficient estimation when the variable of interest, assumed to be of Weibull type, is observed simultaneously with a random covariate. In particular, we introduce a robust estimator for the tail coefficient, using the idea of the density power divergence, based on the relative excesses above a high threshold. The main asymptotic properties of our estimator are established under very general assumptions. The finite sample performance of the proposed procedure is evaluated by a small simulation experiment.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-014-0458-9</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.479-514
issn 0020-3157
1572-9052
language eng
recordid cdi_hal_primary_oai_HAL_hal_01312924v1
source Springer Online Journals【Remote access available】; EZB Free E-Journals
subjects Asymptotic properties
Coefficients
Density
Economics
Estimating techniques
Estimators
Finance
Insurance
Management
Mathematical analysis
Mathematics
Mathematics and Statistics
Maximum likelihood method
Normal distribution
Samples
Simulation
Statistical analysis
Statistics
Statistics for Business
Studies
title Robust conditional Weibull-type estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20conditional%20Weibull-type%20estimation&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Goegebeur,%20Yuri&rft.date=2015-06-01&rft.volume=67&rft.issue=3&rft.spage=479&rft.epage=514&rft.pages=479-514&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-014-0458-9&rft_dat=%3Cproquest_hal_p%3E1685789986%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675590337&rft_id=info:pmid/&rfr_iscdi=true