Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes

To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2017-09, Vol.22 (9), p.1847-1865
Hauptverfasser: Auffray, N, Kolev, B, Olive, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1865
container_issue 9
container_start_page 1847
container_title Mathematics and mechanics of solids
container_volume 22
creator Auffray, N
Kolev, B
Olive, M
description To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in ℝ 2 using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.
doi_str_mv 10.1177/1081286516649017
format Article
fullrecord <record><control><sourceid>sage_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01303964v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286516649017</sage_id><sourcerecordid>10.1177_1081286516649017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqWwM3plCPjFdpx0qypoKlWCAcRoOY4NLklc2QGp_x5HRQxITO_07rsbDqFrILcAQtwBKSEvCw5FwSoC4gTNQDDIKMnL06STnU3-ObqIcUcIybmgM_Raq6FtvP_A3uLGZa3rzRCdH1SHx6R8iAv8pMKINwtcq9D7wWncGu37vY9uTCRODTge-t6M4YB1p2I08RKdWdVFc_Vz5-jl4f55VWfbx_VmtdxmmnIxZoxpEJBbZqHgFVCjgYOiirbp2RjdGNMqQwpbcW20AcuhYawUhYCSlgLoHN0ce99VJ_fB9SocpFdO1sutnH4EKKFVwb4mlhxZHXyMwdjfABA5jSj_jpgi2TES1ZuRO_8Z0jDxf_4b189xAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><source>SAGE Complete</source><creator>Auffray, N ; Kolev, B ; Olive, M</creator><creatorcontrib>Auffray, N ; Kolev, B ; Olive, M</creatorcontrib><description>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in ℝ 2 using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286516649017</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Mechanics ; Physics ; Solid mechanics</subject><ispartof>Mathematics and mechanics of solids, 2017-09, Vol.22 (9), p.1847-1865</ispartof><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</citedby><cites>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</cites><orcidid>0000-0002-8839-0634 ; 0000-0002-2802-1589 ; 0000-0001-5951-2412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286516649017$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286516649017$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01303964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auffray, N</creatorcontrib><creatorcontrib>Kolev, B</creatorcontrib><creatorcontrib>Olive, M</creatorcontrib><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><title>Mathematics and mechanics of solids</title><description>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in ℝ 2 using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</description><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqWwM3plCPjFdpx0qypoKlWCAcRoOY4NLklc2QGp_x5HRQxITO_07rsbDqFrILcAQtwBKSEvCw5FwSoC4gTNQDDIKMnL06STnU3-ObqIcUcIybmgM_Raq6FtvP_A3uLGZa3rzRCdH1SHx6R8iAv8pMKINwtcq9D7wWncGu37vY9uTCRODTge-t6M4YB1p2I08RKdWdVFc_Vz5-jl4f55VWfbx_VmtdxmmnIxZoxpEJBbZqHgFVCjgYOiirbp2RjdGNMqQwpbcW20AcuhYawUhYCSlgLoHN0ce99VJ_fB9SocpFdO1sutnH4EKKFVwb4mlhxZHXyMwdjfABA5jSj_jpgi2TES1ZuRO_8Z0jDxf_4b189xAw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Auffray, N</creator><creator>Kolev, B</creator><creator>Olive, M</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8839-0634</orcidid><orcidid>https://orcid.org/0000-0002-2802-1589</orcidid><orcidid>https://orcid.org/0000-0001-5951-2412</orcidid></search><sort><creationdate>201709</creationdate><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><author>Auffray, N ; Kolev, B ; Olive, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auffray, N</creatorcontrib><creatorcontrib>Kolev, B</creatorcontrib><creatorcontrib>Olive, M</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auffray, N</au><au>Kolev, B</au><au>Olive, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2017-09</date><risdate>2017</risdate><volume>22</volume><issue>9</issue><spage>1847</spage><epage>1865</epage><pages>1847-1865</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in ℝ 2 using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286516649017</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8839-0634</orcidid><orcidid>https://orcid.org/0000-0002-2802-1589</orcidid><orcidid>https://orcid.org/0000-0001-5951-2412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2017-09, Vol.22 (9), p.1847-1865
issn 1081-2865
1741-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_01303964v1
source SAGE Complete
subjects Mechanics
Physics
Solid mechanics
title Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handbook%20of%20bi-dimensional%20tensors:%20Part%20I:%20Harmonic%20decomposition%20and%20symmetry%20classes&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Auffray,%20N&rft.date=2017-09&rft.volume=22&rft.issue=9&rft.spage=1847&rft.epage=1865&rft.pages=1847-1865&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286516649017&rft_dat=%3Csage_hal_p%3E10.1177_1081286516649017%3C/sage_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286516649017&rfr_iscdi=true