Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes
To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different typ...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2017-09, Vol.22 (9), p.1847-1865 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1865 |
---|---|
container_issue | 9 |
container_start_page | 1847 |
container_title | Mathematics and mechanics of solids |
container_volume | 22 |
creator | Auffray, N Kolev, B Olive, M |
description | To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in
ℝ
2
using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity. |
doi_str_mv | 10.1177/1081286516649017 |
format | Article |
fullrecord | <record><control><sourceid>sage_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01303964v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286516649017</sage_id><sourcerecordid>10.1177_1081286516649017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqWwM3plCPjFdpx0qypoKlWCAcRoOY4NLklc2QGp_x5HRQxITO_07rsbDqFrILcAQtwBKSEvCw5FwSoC4gTNQDDIKMnL06STnU3-ObqIcUcIybmgM_Raq6FtvP_A3uLGZa3rzRCdH1SHx6R8iAv8pMKINwtcq9D7wWncGu37vY9uTCRODTge-t6M4YB1p2I08RKdWdVFc_Vz5-jl4f55VWfbx_VmtdxmmnIxZoxpEJBbZqHgFVCjgYOiirbp2RjdGNMqQwpbcW20AcuhYawUhYCSlgLoHN0ce99VJ_fB9SocpFdO1sutnH4EKKFVwb4mlhxZHXyMwdjfABA5jSj_jpgi2TES1ZuRO_8Z0jDxf_4b189xAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><source>SAGE Complete</source><creator>Auffray, N ; Kolev, B ; Olive, M</creator><creatorcontrib>Auffray, N ; Kolev, B ; Olive, M</creatorcontrib><description>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in
ℝ
2
using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286516649017</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Mechanics ; Physics ; Solid mechanics</subject><ispartof>Mathematics and mechanics of solids, 2017-09, Vol.22 (9), p.1847-1865</ispartof><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</citedby><cites>FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</cites><orcidid>0000-0002-8839-0634 ; 0000-0002-2802-1589 ; 0000-0001-5951-2412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286516649017$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286516649017$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01303964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auffray, N</creatorcontrib><creatorcontrib>Kolev, B</creatorcontrib><creatorcontrib>Olive, M</creatorcontrib><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><title>Mathematics and mechanics of solids</title><description>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in
ℝ
2
using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</description><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqWwM3plCPjFdpx0qypoKlWCAcRoOY4NLklc2QGp_x5HRQxITO_07rsbDqFrILcAQtwBKSEvCw5FwSoC4gTNQDDIKMnL06STnU3-ObqIcUcIybmgM_Raq6FtvP_A3uLGZa3rzRCdH1SHx6R8iAv8pMKINwtcq9D7wWncGu37vY9uTCRODTge-t6M4YB1p2I08RKdWdVFc_Vz5-jl4f55VWfbx_VmtdxmmnIxZoxpEJBbZqHgFVCjgYOiirbp2RjdGNMqQwpbcW20AcuhYawUhYCSlgLoHN0ce99VJ_fB9SocpFdO1sutnH4EKKFVwb4mlhxZHXyMwdjfABA5jSj_jpgi2TES1ZuRO_8Z0jDxf_4b189xAw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Auffray, N</creator><creator>Kolev, B</creator><creator>Olive, M</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8839-0634</orcidid><orcidid>https://orcid.org/0000-0002-2802-1589</orcidid><orcidid>https://orcid.org/0000-0001-5951-2412</orcidid></search><sort><creationdate>201709</creationdate><title>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</title><author>Auffray, N ; Kolev, B ; Olive, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-44c1712f4f165913ec151a3a3d12fbecbeedae06f95cece1f51b4487671838713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auffray, N</creatorcontrib><creatorcontrib>Kolev, B</creatorcontrib><creatorcontrib>Olive, M</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auffray, N</au><au>Kolev, B</au><au>Olive, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2017-09</date><risdate>2017</risdate><volume>22</volume><issue>9</issue><spage>1847</spage><epage>1865</epage><pages>1847-1865</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>To investigate complex physical phenomena, bi-dimensional models are often an interesting option. It allows spatial couplings to be produced while keeping them as simple as possible. For linear physical laws, constitutive equations involve the use of tensor spaces. As a consequence the different types of anisotropy that can be described are encoded in tensor spaces involved in the model. In the present paper, we solve the general problem of computing symmetry classes of constitutive tensors in
ℝ
2
using mathematical tools coming from representation theory. The power of this method is illustrated through the tensor spaces of Mindlin strain-gradient elasticity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286516649017</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8839-0634</orcidid><orcidid>https://orcid.org/0000-0002-2802-1589</orcidid><orcidid>https://orcid.org/0000-0001-5951-2412</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-2865 |
ispartof | Mathematics and mechanics of solids, 2017-09, Vol.22 (9), p.1847-1865 |
issn | 1081-2865 1741-3028 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01303964v1 |
source | SAGE Complete |
subjects | Mechanics Physics Solid mechanics |
title | Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handbook%20of%20bi-dimensional%20tensors:%20Part%20I:%20Harmonic%20decomposition%20and%20symmetry%20classes&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Auffray,%20N&rft.date=2017-09&rft.volume=22&rft.issue=9&rft.spage=1847&rft.epage=1865&rft.pages=1847-1865&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286516649017&rft_dat=%3Csage_hal_p%3E10.1177_1081286516649017%3C/sage_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286516649017&rfr_iscdi=true |