3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718

Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44
Hauptverfasser: De Jaeger, Julien, Solas, Denis, Fandeur, Olivier, Schmitt, Jean-Hubert, Rey, Colette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 33
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 646
creator De Jaeger, Julien
Solas, Denis
Fandeur, Olivier
Schmitt, Jean-Hubert
Rey, Colette
description Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.
doi_str_mv 10.1016/j.msea.2015.08.038
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01302581v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315302860</els_id><sourcerecordid>1778005434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhomiBeKm_QOZODaDlKNISnTRxUiaD8BAlmRmafLU0KVIh5RdOL8-clx0zHTA3fO-wD2EnDGoGbD2Yl0PBU3dAJM1qBq4-kBmTHW8EnPefiQzmDeskjDnJ-RzKWsAYALkjPziVzRuB8zemkCH5DD4-Jumnrp9NIO3NKPN-zKaEPyLGX2KdBsdZvqURvo35T8T_p0uNpswNbydx0Tvok0RA-2Y-kI-9SYU_PpvnpLH658Pl7fV8v7m7nKxrCxvu7FqRYerhgs7N0IZJbumla6XTjroV81K8KYF00mmequEtRYV9gC9gXYlmXSGn5LzY--TCXqT_WDyXifj9e1iqQ87YBwaqdiOTey3I7vJ6XmLZdSDLxZDMBHTtmjWdQpACi4mtDmiNqdSMvb_uxnog3q91gf1-qBeg9KT-in04xjC6eGdx6yL9RgtOj_ZHLVL_r34K-2ejJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778005434</pqid></control><display><type>article</type><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><source>Access via ScienceDirect (Elsevier)</source><creator>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</creator><creatorcontrib>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</creatorcontrib><description>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.08.038</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cellular automata ; Crystal plasticity finite element model ; Dynamic recrystallization ; Engineering Sciences ; Grain size ; Hot forging ; Inconel 718 ; Mathematical models ; Microstructure ; Modeling ; Nickel base alloys ; Recrystallization ; Strain ; Superalloys ; Three dimensional models</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</citedby><cites>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</cites><orcidid>0000-0002-3076-2191 ; 0000-0002-9381-8041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2015.08.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01302581$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Jaeger, Julien</creatorcontrib><creatorcontrib>Solas, Denis</creatorcontrib><creatorcontrib>Fandeur, Olivier</creatorcontrib><creatorcontrib>Schmitt, Jean-Hubert</creatorcontrib><creatorcontrib>Rey, Colette</creatorcontrib><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</description><subject>Cellular automata</subject><subject>Crystal plasticity finite element model</subject><subject>Dynamic recrystallization</subject><subject>Engineering Sciences</subject><subject>Grain size</subject><subject>Hot forging</subject><subject>Inconel 718</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Modeling</subject><subject>Nickel base alloys</subject><subject>Recrystallization</subject><subject>Strain</subject><subject>Superalloys</subject><subject>Three dimensional models</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1v2zAQhomiBeKm_QOZODaDlKNISnTRxUiaD8BAlmRmafLU0KVIh5RdOL8-clx0zHTA3fO-wD2EnDGoGbD2Yl0PBU3dAJM1qBq4-kBmTHW8EnPefiQzmDeskjDnJ-RzKWsAYALkjPziVzRuB8zemkCH5DD4-Jumnrp9NIO3NKPN-zKaEPyLGX2KdBsdZvqURvo35T8T_p0uNpswNbydx0Tvok0RA-2Y-kI-9SYU_PpvnpLH658Pl7fV8v7m7nKxrCxvu7FqRYerhgs7N0IZJbumla6XTjroV81K8KYF00mmequEtRYV9gC9gXYlmXSGn5LzY--TCXqT_WDyXifj9e1iqQ87YBwaqdiOTey3I7vJ6XmLZdSDLxZDMBHTtmjWdQpACi4mtDmiNqdSMvb_uxnog3q91gf1-qBeg9KT-in04xjC6eGdx6yL9RgtOj_ZHLVL_r34K-2ejJc</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>De Jaeger, Julien</creator><creator>Solas, Denis</creator><creator>Fandeur, Olivier</creator><creator>Schmitt, Jean-Hubert</creator><creator>Rey, Colette</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3076-2191</orcidid><orcidid>https://orcid.org/0000-0002-9381-8041</orcidid></search><sort><creationdate>20151014</creationdate><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><author>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cellular automata</topic><topic>Crystal plasticity finite element model</topic><topic>Dynamic recrystallization</topic><topic>Engineering Sciences</topic><topic>Grain size</topic><topic>Hot forging</topic><topic>Inconel 718</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Modeling</topic><topic>Nickel base alloys</topic><topic>Recrystallization</topic><topic>Strain</topic><topic>Superalloys</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Jaeger, Julien</creatorcontrib><creatorcontrib>Solas, Denis</creatorcontrib><creatorcontrib>Fandeur, Olivier</creatorcontrib><creatorcontrib>Schmitt, Jean-Hubert</creatorcontrib><creatorcontrib>Rey, Colette</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Jaeger, Julien</au><au>Solas, Denis</au><au>Fandeur, Olivier</au><au>Schmitt, Jean-Hubert</au><au>Rey, Colette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-10-14</date><risdate>2015</risdate><volume>646</volume><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.08.038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3076-2191</orcidid><orcidid>https://orcid.org/0000-0002-9381-8041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_hal_01302581v1
source Access via ScienceDirect (Elsevier)
subjects Cellular automata
Crystal plasticity finite element model
Dynamic recrystallization
Engineering Sciences
Grain size
Hot forging
Inconel 718
Mathematical models
Microstructure
Modeling
Nickel base alloys
Recrystallization
Strain
Superalloys
Three dimensional models
title 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20numerical%20modeling%20of%20dynamic%20recrystallization%20under%20hot%20working:%20Application%20to%20Inconel%20718&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=De%20Jaeger,%20Julien&rft.date=2015-10-14&rft.volume=646&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.08.038&rft_dat=%3Cproquest_hal_p%3E1778005434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778005434&rft_id=info:pmid/&rft_els_id=S0921509315302860&rfr_iscdi=true