3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718
Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 646 |
creator | De Jaeger, Julien Solas, Denis Fandeur, Olivier Schmitt, Jean-Hubert Rey, Colette |
description | Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for. |
doi_str_mv | 10.1016/j.msea.2015.08.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01302581v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315302860</els_id><sourcerecordid>1778005434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhomiBeKm_QOZODaDlKNISnTRxUiaD8BAlmRmafLU0KVIh5RdOL8-clx0zHTA3fO-wD2EnDGoGbD2Yl0PBU3dAJM1qBq4-kBmTHW8EnPefiQzmDeskjDnJ-RzKWsAYALkjPziVzRuB8zemkCH5DD4-Jumnrp9NIO3NKPN-zKaEPyLGX2KdBsdZvqURvo35T8T_p0uNpswNbydx0Tvok0RA-2Y-kI-9SYU_PpvnpLH658Pl7fV8v7m7nKxrCxvu7FqRYerhgs7N0IZJbumla6XTjroV81K8KYF00mmequEtRYV9gC9gXYlmXSGn5LzY--TCXqT_WDyXifj9e1iqQ87YBwaqdiOTey3I7vJ6XmLZdSDLxZDMBHTtmjWdQpACi4mtDmiNqdSMvb_uxnog3q91gf1-qBeg9KT-in04xjC6eGdx6yL9RgtOj_ZHLVL_r34K-2ejJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778005434</pqid></control><display><type>article</type><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><source>Access via ScienceDirect (Elsevier)</source><creator>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</creator><creatorcontrib>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</creatorcontrib><description>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.08.038</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cellular automata ; Crystal plasticity finite element model ; Dynamic recrystallization ; Engineering Sciences ; Grain size ; Hot forging ; Inconel 718 ; Mathematical models ; Microstructure ; Modeling ; Nickel base alloys ; Recrystallization ; Strain ; Superalloys ; Three dimensional models</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</citedby><cites>FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</cites><orcidid>0000-0002-3076-2191 ; 0000-0002-9381-8041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2015.08.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01302581$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Jaeger, Julien</creatorcontrib><creatorcontrib>Solas, Denis</creatorcontrib><creatorcontrib>Fandeur, Olivier</creatorcontrib><creatorcontrib>Schmitt, Jean-Hubert</creatorcontrib><creatorcontrib>Rey, Colette</creatorcontrib><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</description><subject>Cellular automata</subject><subject>Crystal plasticity finite element model</subject><subject>Dynamic recrystallization</subject><subject>Engineering Sciences</subject><subject>Grain size</subject><subject>Hot forging</subject><subject>Inconel 718</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Modeling</subject><subject>Nickel base alloys</subject><subject>Recrystallization</subject><subject>Strain</subject><subject>Superalloys</subject><subject>Three dimensional models</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1v2zAQhomiBeKm_QOZODaDlKNISnTRxUiaD8BAlmRmafLU0KVIh5RdOL8-clx0zHTA3fO-wD2EnDGoGbD2Yl0PBU3dAJM1qBq4-kBmTHW8EnPefiQzmDeskjDnJ-RzKWsAYALkjPziVzRuB8zemkCH5DD4-Jumnrp9NIO3NKPN-zKaEPyLGX2KdBsdZvqURvo35T8T_p0uNpswNbydx0Tvok0RA-2Y-kI-9SYU_PpvnpLH658Pl7fV8v7m7nKxrCxvu7FqRYerhgs7N0IZJbumla6XTjroV81K8KYF00mmequEtRYV9gC9gXYlmXSGn5LzY--TCXqT_WDyXifj9e1iqQ87YBwaqdiOTey3I7vJ6XmLZdSDLxZDMBHTtmjWdQpACi4mtDmiNqdSMvb_uxnog3q91gf1-qBeg9KT-in04xjC6eGdx6yL9RgtOj_ZHLVL_r34K-2ejJc</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>De Jaeger, Julien</creator><creator>Solas, Denis</creator><creator>Fandeur, Olivier</creator><creator>Schmitt, Jean-Hubert</creator><creator>Rey, Colette</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3076-2191</orcidid><orcidid>https://orcid.org/0000-0002-9381-8041</orcidid></search><sort><creationdate>20151014</creationdate><title>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</title><author>De Jaeger, Julien ; Solas, Denis ; Fandeur, Olivier ; Schmitt, Jean-Hubert ; Rey, Colette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-647eb234c9a48a857265df5d5d0fb2b43260a7518fc84ccce8ef00fa06b515da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cellular automata</topic><topic>Crystal plasticity finite element model</topic><topic>Dynamic recrystallization</topic><topic>Engineering Sciences</topic><topic>Grain size</topic><topic>Hot forging</topic><topic>Inconel 718</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Modeling</topic><topic>Nickel base alloys</topic><topic>Recrystallization</topic><topic>Strain</topic><topic>Superalloys</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Jaeger, Julien</creatorcontrib><creatorcontrib>Solas, Denis</creatorcontrib><creatorcontrib>Fandeur, Olivier</creatorcontrib><creatorcontrib>Schmitt, Jean-Hubert</creatorcontrib><creatorcontrib>Rey, Colette</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Jaeger, Julien</au><au>Solas, Denis</au><au>Fandeur, Olivier</au><au>Schmitt, Jean-Hubert</au><au>Rey, Colette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-10-14</date><risdate>2015</risdate><volume>646</volume><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Hot forging of Inconel 718 is an essential process to give shape and in-use properties to final part design. Dynamic recrystallization is the main mechanism influencing the properties through a grain size control. It is then of crucial importance to be able to predict the mechanical behavior during forging and the microstructure evolution during and after the dynamic recrystallization. A coupling between a crystal plasticity finite element model and a recrystallization model using a 3D cellular automata approach is applied to a 3D polycrystalline aggregate deformed by compression. Beyond the prediction of the stress–strain curves at different strain rates, numerical simulations enable the visualization of stress, strain, energy, local orientation, dislocation density fields within the aggregate. Finally, the recrystallization kinetic and the grain size are recorded as a function of strain. The results are in a rather good agreement with experiments, even if the predicted grain size is slightly larger than the measured one. To improve the prediction, annealing twinning is accounted for.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.08.038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3076-2191</orcidid><orcidid>https://orcid.org/0000-0002-9381-8041</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-10, Vol.646, p.33-44 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01302581v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cellular automata Crystal plasticity finite element model Dynamic recrystallization Engineering Sciences Grain size Hot forging Inconel 718 Mathematical models Microstructure Modeling Nickel base alloys Recrystallization Strain Superalloys Three dimensional models |
title | 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20numerical%20modeling%20of%20dynamic%20recrystallization%20under%20hot%20working:%20Application%20to%20Inconel%20718&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=De%20Jaeger,%20Julien&rft.date=2015-10-14&rft.volume=646&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.08.038&rft_dat=%3Cproquest_hal_p%3E1778005434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778005434&rft_id=info:pmid/&rft_els_id=S0921509315302860&rfr_iscdi=true |