Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells
Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radia...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 1999-05, Vol.34 (3), p.391-404 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 3 |
container_start_page | 391 |
container_title | International journal of non-linear mechanics |
container_volume | 34 |
creator | Akyüz, U. Ertepinar, A. |
description | Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.11ABAQUS results were obtained at Indiana University Purdue University Indianapolis, USA The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated. |
doi_str_mv | 10.1016/S0020-7462(98)00015-8 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01302520v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746298000158</els_id><sourcerecordid>oai_HAL_hal_01302520v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-caef3b1e730ac2db03b6e5129ff58ea0f27eb7993de73542ee15981d0efaa5b83</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFYfQcjBgz1EZzfdZHOSUtQKBQ_V8zLZzNKVbVJ2YyE-vWkrevQ0zPB9M8zP2DWHOw48v18BCEiLaS5uSzUBAC5TdcJGXBUqlXmmTtnoFzlnFzF-DEw-hWLE9KrDynnX9Qk2dYKx32yoC84kO1cF7FzbxKS1yTZQjJ_BfVGdmHZzaF3lKVn3WwrkMXaDY3rvmnqw0SdxTd7HS3Zm0Ue6-qlj9v70-DZfpMvX55f5bJmaKS-61CDZrOJUZIBG1BVkVU6Si9JaqQjBioKqoiyzekDkVBBxWSpeA1lEWalszCbHvWv0ehvcBkOvW3R6MVvq_Qx4BkIK2PGBlUfWhDbGQPZX4KD3iepDonofly6VPiSq9zdujt4W4_ChDdgYF__kXIpSiAF7OGI0_LtzFHQ0jhpDtQtkOl237p9D36MhjM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells</title><source>Elsevier ScienceDirect Journals</source><creator>Akyüz, U. ; Ertepinar, A.</creator><creatorcontrib>Akyüz, U. ; Ertepinar, A.</creatorcontrib><description>Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.11ABAQUS results were obtained at Indiana University Purdue University Indianapolis, USA The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/S0020-7462(98)00015-8</identifier><identifier>CODEN: IJNMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>International journal of non-linear mechanics, 1999-05, Vol.34 (3), p.391-404</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-caef3b1e730ac2db03b6e5129ff58ea0f27eb7993de73542ee15981d0efaa5b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746298000158$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1652922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01302520$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Akyüz, U.</creatorcontrib><creatorcontrib>Ertepinar, A.</creatorcontrib><title>Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells</title><title>International journal of non-linear mechanics</title><description>Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.11ABAQUS results were obtained at Indiana University Purdue University Indianapolis, USA The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFYfQcjBgz1EZzfdZHOSUtQKBQ_V8zLZzNKVbVJ2YyE-vWkrevQ0zPB9M8zP2DWHOw48v18BCEiLaS5uSzUBAC5TdcJGXBUqlXmmTtnoFzlnFzF-DEw-hWLE9KrDynnX9Qk2dYKx32yoC84kO1cF7FzbxKS1yTZQjJ_BfVGdmHZzaF3lKVn3WwrkMXaDY3rvmnqw0SdxTd7HS3Zm0Ue6-qlj9v70-DZfpMvX55f5bJmaKS-61CDZrOJUZIBG1BVkVU6Si9JaqQjBioKqoiyzekDkVBBxWSpeA1lEWalszCbHvWv0ehvcBkOvW3R6MVvq_Qx4BkIK2PGBlUfWhDbGQPZX4KD3iepDonofly6VPiSq9zdujt4W4_ChDdgYF__kXIpSiAF7OGI0_LtzFHQ0jhpDtQtkOl237p9D36MhjM8</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Akyüz, U.</creator><creator>Ertepinar, A.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>19990501</creationdate><title>Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells</title><author>Akyüz, U. ; Ertepinar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-caef3b1e730ac2db03b6e5129ff58ea0f27eb7993de73542ee15981d0efaa5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akyüz, U.</creatorcontrib><creatorcontrib>Ertepinar, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akyüz, U.</au><au>Ertepinar, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>34</volume><issue>3</issue><spage>391</spage><epage>404</epage><pages>391-404</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><coden>IJNMAG</coden><abstract>Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.11ABAQUS results were obtained at Indiana University Purdue University Indianapolis, USA The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7462(98)00015-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 1999-05, Vol.34 (3), p.391-404 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01302520v1 |
source | Elsevier ScienceDirect Journals |
subjects | Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | Stability and asymmetric vibrations of pressurized compressible hyperelastic cylindrical shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20asymmetric%20vibrations%20of%20pressurized%20compressible%20hyperelastic%20cylindrical%20shells&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Aky%C3%BCz,%20U.&rft.date=1999-05-01&rft.volume=34&rft.issue=3&rft.spage=391&rft.epage=404&rft.pages=391-404&rft.issn=0020-7462&rft.eissn=1878-5638&rft.coden=IJNMAG&rft_id=info:doi/10.1016/S0020-7462(98)00015-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01302520v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020746298000158&rfr_iscdi=true |