Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models

Abstract We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echoca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrocardiology 2016-05, Vol.49 (3), p.383-391
Hauptverfasser: Piazzese, Concetta, Carminati, M. Chiara, Colombo, Andrea, Krause, Rolf, Potse, Mark, Auricchio, Angelo, Weinert, Lynn, Tamborini, Gloria, Pepi, Mauro, Lang, Roberto M, Caiani, Enrico G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 3
container_start_page 383
container_title Journal of electrocardiology
container_volume 49
creator Piazzese, Concetta
Carminati, M. Chiara
Colombo, Andrea
Krause, Rolf
Potse, Mark
Auricchio, Angelo
Weinert, Lynn
Tamborini, Gloria
Pepi, Mauro
Lang, Roberto M
Caiani, Enrico G
description Abstract We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r2 > 0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.
doi_str_mv 10.1016/j.jelectrocard.2016.03.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01302237v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022073616000984</els_id><sourcerecordid>1786525363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b96e832b3e0a1e019de7a6829a7f33bab061baeabf6a83cd12a0a749f9f654983</originalsourceid><addsrcrecordid>eNqNUk2P0zAUjBCILQt_AVmc2EPCs93YCQek1fKxSJU4LJwtx3luXRK72Emlij-PQ5cV4sTJ0mjejDUzRfGKQkWBijf7ao8DmikGo2NfsYxVwCug8lGxojVnZbPm8LhYATBWguTioniW0h4AWibZ0-KCSVgLCrAqft7hdkQ_6ckFT4Il0w7JgHYix4xGZ-ZBR4K-_-3l5pHYGEYy6q3HyRkSMQWvvUHiMoaJdCcyJ-e3pHfWYswiJC3qKbP1QNJOH5CMocchPS-eWD0kfHH_XhbfPn74enNbbr58-nxzvSlNzehUdq3AhrOOI2iKQNsepRYNa7W0nHe6A0E7jbqzQjfc9JRp0HLd2taKet02_LK4Ouvu9KAOMX80nlTQTt1eb9SCAeU5KS6PNHNfn7mHGH7MmCY1umRwGLTHMCdFZSNqVnPBM_XtmWpiSCmifdCmoJai1F79XZRailLAs53Mxy_vfeZuxP7h9E8zmfD-TMhB4dFhVMk4zEH3LmZJ1Qf3fz7v_pExg_NLFd_xhGkf5uhz9oqqxBSou2Uyy2KoWNaSd_QLmd7CTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786525363</pqid></control><display><type>article</type><title>Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Piazzese, Concetta ; Carminati, M. Chiara ; Colombo, Andrea ; Krause, Rolf ; Potse, Mark ; Auricchio, Angelo ; Weinert, Lynn ; Tamborini, Gloria ; Pepi, Mauro ; Lang, Roberto M ; Caiani, Enrico G</creator><creatorcontrib>Piazzese, Concetta ; Carminati, M. Chiara ; Colombo, Andrea ; Krause, Rolf ; Potse, Mark ; Auricchio, Angelo ; Weinert, Lynn ; Tamborini, Gloria ; Pepi, Mauro ; Lang, Roberto M ; Caiani, Enrico G</creatorcontrib><description>Abstract We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r2 &gt; 0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2016.03.017</identifier><identifier>PMID: 27046100</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cardiac MRI ; Cardiology and cardiovascular system ; Cardiovascular ; Computer Simulation ; Echocardiography - methods ; Echocardiography, Three-Dimensional - methods ; Endocardium - diagnostic imaging ; Endocardium - pathology ; Female ; Human health and pathology ; Humans ; Image segmentation ; Left ventricular volume ; Life Sciences ; Magnetic Resonance Imaging, Cine - methods ; Male ; Middle Aged ; Models, Anatomic ; Models, Cardiovascular ; Models, Statistical ; Reproducibility of Results ; Sensitivity and Specificity ; Statistical shape model ; Subtraction Technique ; Ventricular Dysfunction, Left - diagnostic imaging ; Ventricular Dysfunction, Left - pathology</subject><ispartof>Journal of electrocardiology, 2016-05, Vol.49 (3), p.383-391</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b96e832b3e0a1e019de7a6829a7f33bab061baeabf6a83cd12a0a749f9f654983</citedby><cites>FETCH-LOGICAL-c521t-b96e832b3e0a1e019de7a6829a7f33bab061baeabf6a83cd12a0a749f9f654983</cites><orcidid>0000-0002-3605-1809 ; 0000-0001-5408-5271 ; 0000-0003-4166-2687 ; 0000-0003-2116-6993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelectrocard.2016.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27046100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01302237$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Piazzese, Concetta</creatorcontrib><creatorcontrib>Carminati, M. Chiara</creatorcontrib><creatorcontrib>Colombo, Andrea</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Auricchio, Angelo</creatorcontrib><creatorcontrib>Weinert, Lynn</creatorcontrib><creatorcontrib>Tamborini, Gloria</creatorcontrib><creatorcontrib>Pepi, Mauro</creatorcontrib><creatorcontrib>Lang, Roberto M</creatorcontrib><creatorcontrib>Caiani, Enrico G</creatorcontrib><title>Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r2 &gt; 0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.</description><subject>Cardiac MRI</subject><subject>Cardiology and cardiovascular system</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Echocardiography - methods</subject><subject>Echocardiography, Three-Dimensional - methods</subject><subject>Endocardium - diagnostic imaging</subject><subject>Endocardium - pathology</subject><subject>Female</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Left ventricular volume</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Anatomic</subject><subject>Models, Cardiovascular</subject><subject>Models, Statistical</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Statistical shape model</subject><subject>Subtraction Technique</subject><subject>Ventricular Dysfunction, Left - diagnostic imaging</subject><subject>Ventricular Dysfunction, Left - pathology</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P0zAUjBCILQt_AVmc2EPCs93YCQek1fKxSJU4LJwtx3luXRK72Emlij-PQ5cV4sTJ0mjejDUzRfGKQkWBijf7ao8DmikGo2NfsYxVwCug8lGxojVnZbPm8LhYATBWguTioniW0h4AWibZ0-KCSVgLCrAqft7hdkQ_6ckFT4Il0w7JgHYix4xGZ-ZBR4K-_-3l5pHYGEYy6q3HyRkSMQWvvUHiMoaJdCcyJ-e3pHfWYswiJC3qKbP1QNJOH5CMocchPS-eWD0kfHH_XhbfPn74enNbbr58-nxzvSlNzehUdq3AhrOOI2iKQNsepRYNa7W0nHe6A0E7jbqzQjfc9JRp0HLd2taKet02_LK4Ouvu9KAOMX80nlTQTt1eb9SCAeU5KS6PNHNfn7mHGH7MmCY1umRwGLTHMCdFZSNqVnPBM_XtmWpiSCmifdCmoJai1F79XZRailLAs53Mxy_vfeZuxP7h9E8zmfD-TMhB4dFhVMk4zEH3LmZJ1Qf3fz7v_pExg_NLFd_xhGkf5uhz9oqqxBSou2Uyy2KoWNaSd_QLmd7CTA</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Piazzese, Concetta</creator><creator>Carminati, M. Chiara</creator><creator>Colombo, Andrea</creator><creator>Krause, Rolf</creator><creator>Potse, Mark</creator><creator>Auricchio, Angelo</creator><creator>Weinert, Lynn</creator><creator>Tamborini, Gloria</creator><creator>Pepi, Mauro</creator><creator>Lang, Roberto M</creator><creator>Caiani, Enrico G</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3605-1809</orcidid><orcidid>https://orcid.org/0000-0001-5408-5271</orcidid><orcidid>https://orcid.org/0000-0003-4166-2687</orcidid><orcidid>https://orcid.org/0000-0003-2116-6993</orcidid></search><sort><creationdate>20160501</creationdate><title>Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models</title><author>Piazzese, Concetta ; Carminati, M. Chiara ; Colombo, Andrea ; Krause, Rolf ; Potse, Mark ; Auricchio, Angelo ; Weinert, Lynn ; Tamborini, Gloria ; Pepi, Mauro ; Lang, Roberto M ; Caiani, Enrico G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b96e832b3e0a1e019de7a6829a7f33bab061baeabf6a83cd12a0a749f9f654983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cardiac MRI</topic><topic>Cardiology and cardiovascular system</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Echocardiography - methods</topic><topic>Echocardiography, Three-Dimensional - methods</topic><topic>Endocardium - diagnostic imaging</topic><topic>Endocardium - pathology</topic><topic>Female</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Left ventricular volume</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Anatomic</topic><topic>Models, Cardiovascular</topic><topic>Models, Statistical</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Statistical shape model</topic><topic>Subtraction Technique</topic><topic>Ventricular Dysfunction, Left - diagnostic imaging</topic><topic>Ventricular Dysfunction, Left - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piazzese, Concetta</creatorcontrib><creatorcontrib>Carminati, M. Chiara</creatorcontrib><creatorcontrib>Colombo, Andrea</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Auricchio, Angelo</creatorcontrib><creatorcontrib>Weinert, Lynn</creatorcontrib><creatorcontrib>Tamborini, Gloria</creatorcontrib><creatorcontrib>Pepi, Mauro</creatorcontrib><creatorcontrib>Lang, Roberto M</creatorcontrib><creatorcontrib>Caiani, Enrico G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piazzese, Concetta</au><au>Carminati, M. Chiara</au><au>Colombo, Andrea</au><au>Krause, Rolf</au><au>Potse, Mark</au><au>Auricchio, Angelo</au><au>Weinert, Lynn</au><au>Tamborini, Gloria</au><au>Pepi, Mauro</au><au>Lang, Roberto M</au><au>Caiani, Enrico G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>49</volume><issue>3</issue><spage>383</spage><epage>391</epage><pages>383-391</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Abstract We evaluate in this paper different strategies for the construction of a statistical shape model (SSM) of the left ventricle (LV) to be used for segmentation in cardiac magnetic resonance (CMR) images. From a large database of LV surfaces obtained throughout the cardiac cycle from 3D echocardiographic (3DE) LV images, different LV shape models were built by varying the considered phase in the cardiac cycle and the registration procedure employed for surface alignment. Principal component analysis was computed to describe the statistical variability of the SSMs, which were then deformed by applying an active shape model (ASM) approach to segment the LV endocardium in CMR images of 45 patients. Segmentation performance was evaluated by comparing LV volumes derived by ASM segmentation with different SSMs and those obtained by manual tracing, considered as a reference. A high correlation (r2 &gt; 0.92) was found in all cases, with better results when using the SSM models comprising more than one frame of the cardiac cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27046100</pmid><doi>10.1016/j.jelectrocard.2016.03.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3605-1809</orcidid><orcidid>https://orcid.org/0000-0001-5408-5271</orcidid><orcidid>https://orcid.org/0000-0003-4166-2687</orcidid><orcidid>https://orcid.org/0000-0003-2116-6993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0736
ispartof Journal of electrocardiology, 2016-05, Vol.49 (3), p.383-391
issn 0022-0736
1532-8430
language eng
recordid cdi_hal_primary_oai_HAL_hal_01302237v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cardiac MRI
Cardiology and cardiovascular system
Cardiovascular
Computer Simulation
Echocardiography - methods
Echocardiography, Three-Dimensional - methods
Endocardium - diagnostic imaging
Endocardium - pathology
Female
Human health and pathology
Humans
Image segmentation
Left ventricular volume
Life Sciences
Magnetic Resonance Imaging, Cine - methods
Male
Middle Aged
Models, Anatomic
Models, Cardiovascular
Models, Statistical
Reproducibility of Results
Sensitivity and Specificity
Statistical shape model
Subtraction Technique
Ventricular Dysfunction, Left - diagnostic imaging
Ventricular Dysfunction, Left - pathology
title Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20the%20left%20ventricular%20endocardium%20from%20magnetic%20resonance%20images%20by%20using%20different%20statistical%20shape%20models&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Piazzese,%20Concetta&rft.date=2016-05-01&rft.volume=49&rft.issue=3&rft.spage=383&rft.epage=391&rft.pages=383-391&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2016.03.017&rft_dat=%3Cproquest_hal_p%3E1786525363%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786525363&rft_id=info:pmid/27046100&rft_els_id=1_s2_0_S0022073616000984&rfr_iscdi=true