Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars
The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Planets 2014-09, Vol.119 (9), p.1991-2016 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2016 |
---|---|
container_issue | 9 |
container_start_page | 1991 |
container_title | Journal of geophysical research. Planets |
container_volume | 119 |
creator | Nachon, M. Clegg, S. M. Mangold, N. Schröder, S. Kah, L. C. Dromart, G. Ollila, A. Johnson, J. R. Oehler, D. Z. Bridges, J. C. Le Mouélic, S. Forni, O. Wiens, R.C. Anderson, R. B. Blaney, D. L. Bell III, J.F. Clark, B. Cousin, A. Dyar, M. D. Ehlmann, B. Fabre, C. Gasnault, O. Grotzinger, J. Lasue, J. Lewin, E. Léveillé, R. McLennan, S. Maurice, S. Meslin, P.-Y. Rapin, W. Rice, M. Squyres, S. W. Stack, K. Sumner, D. Y. Vaniman, D. Wellington, D. |
description | The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
Key Points
Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation |
doi_str_mv | 10.1002/2013JE004588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01301703v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618153730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoGGbW3-AoJcW4mYkWZZ1DGbjNNm0UBoCuYixVmaV2utUstNuf320OAmlh85lhpnnHeaDkHcMPjEAfsKBiYslQC7L8hU55KzQmU6V188xaPWGHMV4B8nKlGLikFxV2Fk_9TROXYujow_ObyO1GwxoRxf8H7emzY5WG9dX2J9UU_BD9OOO4khr7By1IcnCMb3CEN-Sgxa76I6e_IJcny2_V-fZ6mv9uTpdZShLLjPZMqZRO1QKG8vA4bpRyIBLXrQtgMobuxaQa11aqa3lrrFaYYm5soUTVizIx7nvBjtzH3yPYWcG9Ob8dGX2uXQLYArEA0vsh5m9D8PPycXR9D5a13W4dcMUDStYyaRQAhL6_h_0bpjCNm2SqFyKQu6PtiDHM2XDEGNw7csEDMz-FebvVyRczPgv37ndf1lzUX9bcuClTKpsVvk4ut8vKgw_TKGEkubmS20ua5A3gl2aW_EI3bKWcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645365691</pqid></control><display><type>article</type><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</creator><creatorcontrib>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</creatorcontrib><description>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
Key Points
Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/2013JE004588</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>alteration ; Calcium ; Calcium sulfate ; ChemCam ; Curiosity ; Diagenesis ; Earth Sciences ; Fluvial sediments ; Gypsum ; LIBS ; Lithification ; Mars ; Sciences of the Universe ; Sediments ; Sulfates ; Sulfur ; Veins (geology)</subject><ispartof>Journal of geophysical research. Planets, 2014-09, Vol.119 (9), p.1991-2016</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</citedby><cites>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</cites><orcidid>0000-0002-0022-0631 ; 0000-0001-8627-4050 ; 0000-0001-6772-9689 ; 0009-0001-2345-270X ; 0000-0001-7823-7794 ; 0000-0002-2407-2880 ; 0000-0003-4259-7178 ; 0000-0001-5260-1367 ; 0000-0002-3409-7344 ; 0000-0002-6979-9012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JE004588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JE004588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01301703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nachon, M.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Mangold, N.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Kah, L. C.</creatorcontrib><creatorcontrib>Dromart, G.</creatorcontrib><creatorcontrib>Ollila, A.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Oehler, D. Z.</creatorcontrib><creatorcontrib>Bridges, J. C.</creatorcontrib><creatorcontrib>Le Mouélic, S.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Wiens, R.C.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><creatorcontrib>Blaney, D. L.</creatorcontrib><creatorcontrib>Bell III, J.F.</creatorcontrib><creatorcontrib>Clark, B.</creatorcontrib><creatorcontrib>Cousin, A.</creatorcontrib><creatorcontrib>Dyar, M. D.</creatorcontrib><creatorcontrib>Ehlmann, B.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Gasnault, O.</creatorcontrib><creatorcontrib>Grotzinger, J.</creatorcontrib><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Lewin, E.</creatorcontrib><creatorcontrib>Léveillé, R.</creatorcontrib><creatorcontrib>McLennan, S.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Rapin, W.</creatorcontrib><creatorcontrib>Rice, M.</creatorcontrib><creatorcontrib>Squyres, S. W.</creatorcontrib><creatorcontrib>Stack, K.</creatorcontrib><creatorcontrib>Sumner, D. Y.</creatorcontrib><creatorcontrib>Vaniman, D.</creatorcontrib><creatorcontrib>Wellington, D.</creatorcontrib><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><title>Journal of geophysical research. Planets</title><addtitle>J. Geophys. Res. Planets</addtitle><description>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
Key Points
Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</description><subject>alteration</subject><subject>Calcium</subject><subject>Calcium sulfate</subject><subject>ChemCam</subject><subject>Curiosity</subject><subject>Diagenesis</subject><subject>Earth Sciences</subject><subject>Fluvial sediments</subject><subject>Gypsum</subject><subject>LIBS</subject><subject>Lithification</subject><subject>Mars</subject><subject>Sciences of the Universe</subject><subject>Sediments</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Veins (geology)</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpoGGbW3-AoJcW4mYkWZZ1DGbjNNm0UBoCuYixVmaV2utUstNuf320OAmlh85lhpnnHeaDkHcMPjEAfsKBiYslQC7L8hU55KzQmU6V188xaPWGHMV4B8nKlGLikFxV2Fk_9TROXYujow_ObyO1GwxoRxf8H7emzY5WG9dX2J9UU_BD9OOO4khr7By1IcnCMb3CEN-Sgxa76I6e_IJcny2_V-fZ6mv9uTpdZShLLjPZMqZRO1QKG8vA4bpRyIBLXrQtgMobuxaQa11aqa3lrrFaYYm5soUTVizIx7nvBjtzH3yPYWcG9Ob8dGX2uXQLYArEA0vsh5m9D8PPycXR9D5a13W4dcMUDStYyaRQAhL6_h_0bpjCNm2SqFyKQu6PtiDHM2XDEGNw7csEDMz-FebvVyRczPgv37ndf1lzUX9bcuClTKpsVvk4ut8vKgw_TKGEkubmS20ua5A3gl2aW_EI3bKWcw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Nachon, M.</creator><creator>Clegg, S. M.</creator><creator>Mangold, N.</creator><creator>Schröder, S.</creator><creator>Kah, L. C.</creator><creator>Dromart, G.</creator><creator>Ollila, A.</creator><creator>Johnson, J. R.</creator><creator>Oehler, D. Z.</creator><creator>Bridges, J. C.</creator><creator>Le Mouélic, S.</creator><creator>Forni, O.</creator><creator>Wiens, R.C.</creator><creator>Anderson, R. B.</creator><creator>Blaney, D. L.</creator><creator>Bell III, J.F.</creator><creator>Clark, B.</creator><creator>Cousin, A.</creator><creator>Dyar, M. D.</creator><creator>Ehlmann, B.</creator><creator>Fabre, C.</creator><creator>Gasnault, O.</creator><creator>Grotzinger, J.</creator><creator>Lasue, J.</creator><creator>Lewin, E.</creator><creator>Léveillé, R.</creator><creator>McLennan, S.</creator><creator>Maurice, S.</creator><creator>Meslin, P.-Y.</creator><creator>Rapin, W.</creator><creator>Rice, M.</creator><creator>Squyres, S. W.</creator><creator>Stack, K.</creator><creator>Sumner, D. Y.</creator><creator>Vaniman, D.</creator><creator>Wellington, D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0022-0631</orcidid><orcidid>https://orcid.org/0000-0001-8627-4050</orcidid><orcidid>https://orcid.org/0000-0001-6772-9689</orcidid><orcidid>https://orcid.org/0009-0001-2345-270X</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0002-2407-2880</orcidid><orcidid>https://orcid.org/0000-0003-4259-7178</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid></search><sort><creationdate>201409</creationdate><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><author>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alteration</topic><topic>Calcium</topic><topic>Calcium sulfate</topic><topic>ChemCam</topic><topic>Curiosity</topic><topic>Diagenesis</topic><topic>Earth Sciences</topic><topic>Fluvial sediments</topic><topic>Gypsum</topic><topic>LIBS</topic><topic>Lithification</topic><topic>Mars</topic><topic>Sciences of the Universe</topic><topic>Sediments</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Veins (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nachon, M.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Mangold, N.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Kah, L. C.</creatorcontrib><creatorcontrib>Dromart, G.</creatorcontrib><creatorcontrib>Ollila, A.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Oehler, D. Z.</creatorcontrib><creatorcontrib>Bridges, J. C.</creatorcontrib><creatorcontrib>Le Mouélic, S.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Wiens, R.C.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><creatorcontrib>Blaney, D. L.</creatorcontrib><creatorcontrib>Bell III, J.F.</creatorcontrib><creatorcontrib>Clark, B.</creatorcontrib><creatorcontrib>Cousin, A.</creatorcontrib><creatorcontrib>Dyar, M. D.</creatorcontrib><creatorcontrib>Ehlmann, B.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Gasnault, O.</creatorcontrib><creatorcontrib>Grotzinger, J.</creatorcontrib><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Lewin, E.</creatorcontrib><creatorcontrib>Léveillé, R.</creatorcontrib><creatorcontrib>McLennan, S.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Rapin, W.</creatorcontrib><creatorcontrib>Rice, M.</creatorcontrib><creatorcontrib>Squyres, S. W.</creatorcontrib><creatorcontrib>Stack, K.</creatorcontrib><creatorcontrib>Sumner, D. Y.</creatorcontrib><creatorcontrib>Vaniman, D.</creatorcontrib><creatorcontrib>Wellington, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nachon, M.</au><au>Clegg, S. M.</au><au>Mangold, N.</au><au>Schröder, S.</au><au>Kah, L. C.</au><au>Dromart, G.</au><au>Ollila, A.</au><au>Johnson, J. R.</au><au>Oehler, D. Z.</au><au>Bridges, J. C.</au><au>Le Mouélic, S.</au><au>Forni, O.</au><au>Wiens, R.C.</au><au>Anderson, R. B.</au><au>Blaney, D. L.</au><au>Bell III, J.F.</au><au>Clark, B.</au><au>Cousin, A.</au><au>Dyar, M. D.</au><au>Ehlmann, B.</au><au>Fabre, C.</au><au>Gasnault, O.</au><au>Grotzinger, J.</au><au>Lasue, J.</au><au>Lewin, E.</au><au>Léveillé, R.</au><au>McLennan, S.</au><au>Maurice, S.</au><au>Meslin, P.-Y.</au><au>Rapin, W.</au><au>Rice, M.</au><au>Squyres, S. W.</au><au>Stack, K.</au><au>Sumner, D. Y.</au><au>Vaniman, D.</au><au>Wellington, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</atitle><jtitle>Journal of geophysical research. Planets</jtitle><addtitle>J. Geophys. Res. Planets</addtitle><date>2014-09</date><risdate>2014</risdate><volume>119</volume><issue>9</issue><spage>1991</spage><epage>2016</epage><pages>1991-2016</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
Key Points
Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JE004588</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0022-0631</orcidid><orcidid>https://orcid.org/0000-0001-8627-4050</orcidid><orcidid>https://orcid.org/0000-0001-6772-9689</orcidid><orcidid>https://orcid.org/0009-0001-2345-270X</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0002-2407-2880</orcidid><orcidid>https://orcid.org/0000-0003-4259-7178</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9097 |
ispartof | Journal of geophysical research. Planets, 2014-09, Vol.119 (9), p.1991-2016 |
issn | 2169-9097 2169-9100 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01301703v1 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | alteration Calcium Calcium sulfate ChemCam Curiosity Diagenesis Earth Sciences Fluvial sediments Gypsum LIBS Lithification Mars Sciences of the Universe Sediments Sulfates Sulfur Veins (geology) |
title | Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20sulfate%20veins%20characterized%20by%20ChemCam/Curiosity%20at%20Gale%20crater,%20Mars&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Nachon,%20M.&rft.date=2014-09&rft.volume=119&rft.issue=9&rft.spage=1991&rft.epage=2016&rft.pages=1991-2016&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/2013JE004588&rft_dat=%3Cproquest_hal_p%3E1618153730%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645365691&rft_id=info:pmid/&rfr_iscdi=true |