Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars

The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2014-09, Vol.119 (9), p.1991-2016
Hauptverfasser: Nachon, M., Clegg, S. M., Mangold, N., Schröder, S., Kah, L. C., Dromart, G., Ollila, A., Johnson, J. R., Oehler, D. Z., Bridges, J. C., Le Mouélic, S., Forni, O., Wiens, R.C., Anderson, R. B., Blaney, D. L., Bell III, J.F., Clark, B., Cousin, A., Dyar, M. D., Ehlmann, B., Fabre, C., Gasnault, O., Grotzinger, J., Lasue, J., Lewin, E., Léveillé, R., McLennan, S., Maurice, S., Meslin, P.-Y., Rapin, W., Rice, M., Squyres, S. W., Stack, K., Sumner, D. Y., Vaniman, D., Wellington, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2016
container_issue 9
container_start_page 1991
container_title Journal of geophysical research. Planets
container_volume 119
creator Nachon, M.
Clegg, S. M.
Mangold, N.
Schröder, S.
Kah, L. C.
Dromart, G.
Ollila, A.
Johnson, J. R.
Oehler, D. Z.
Bridges, J. C.
Le Mouélic, S.
Forni, O.
Wiens, R.C.
Anderson, R. B.
Blaney, D. L.
Bell III, J.F.
Clark, B.
Cousin, A.
Dyar, M. D.
Ehlmann, B.
Fabre, C.
Gasnault, O.
Grotzinger, J.
Lasue, J.
Lewin, E.
Léveillé, R.
McLennan, S.
Maurice, S.
Meslin, P.-Y.
Rapin, W.
Rice, M.
Squyres, S. W.
Stack, K.
Sumner, D. Y.
Vaniman, D.
Wellington, D.
description The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions. Key Points Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation
doi_str_mv 10.1002/2013JE004588
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01301703v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618153730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoGGbW3-AoJcW4mYkWZZ1DGbjNNm0UBoCuYixVmaV2utUstNuf320OAmlh85lhpnnHeaDkHcMPjEAfsKBiYslQC7L8hU55KzQmU6V188xaPWGHMV4B8nKlGLikFxV2Fk_9TROXYujow_ObyO1GwxoRxf8H7emzY5WG9dX2J9UU_BD9OOO4khr7By1IcnCMb3CEN-Sgxa76I6e_IJcny2_V-fZ6mv9uTpdZShLLjPZMqZRO1QKG8vA4bpRyIBLXrQtgMobuxaQa11aqa3lrrFaYYm5soUTVizIx7nvBjtzH3yPYWcG9Ob8dGX2uXQLYArEA0vsh5m9D8PPycXR9D5a13W4dcMUDStYyaRQAhL6_h_0bpjCNm2SqFyKQu6PtiDHM2XDEGNw7csEDMz-FebvVyRczPgv37ndf1lzUX9bcuClTKpsVvk4ut8vKgw_TKGEkubmS20ua5A3gl2aW_EI3bKWcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645365691</pqid></control><display><type>article</type><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</creator><creatorcontrib>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</creatorcontrib><description>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions. Key Points Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/2013JE004588</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>alteration ; Calcium ; Calcium sulfate ; ChemCam ; Curiosity ; Diagenesis ; Earth Sciences ; Fluvial sediments ; Gypsum ; LIBS ; Lithification ; Mars ; Sciences of the Universe ; Sediments ; Sulfates ; Sulfur ; Veins (geology)</subject><ispartof>Journal of geophysical research. Planets, 2014-09, Vol.119 (9), p.1991-2016</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</citedby><cites>FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</cites><orcidid>0000-0002-0022-0631 ; 0000-0001-8627-4050 ; 0000-0001-6772-9689 ; 0009-0001-2345-270X ; 0000-0001-7823-7794 ; 0000-0002-2407-2880 ; 0000-0003-4259-7178 ; 0000-0001-5260-1367 ; 0000-0002-3409-7344 ; 0000-0002-6979-9012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JE004588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JE004588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01301703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nachon, M.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Mangold, N.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Kah, L. C.</creatorcontrib><creatorcontrib>Dromart, G.</creatorcontrib><creatorcontrib>Ollila, A.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Oehler, D. Z.</creatorcontrib><creatorcontrib>Bridges, J. C.</creatorcontrib><creatorcontrib>Le Mouélic, S.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Wiens, R.C.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><creatorcontrib>Blaney, D. L.</creatorcontrib><creatorcontrib>Bell III, J.F.</creatorcontrib><creatorcontrib>Clark, B.</creatorcontrib><creatorcontrib>Cousin, A.</creatorcontrib><creatorcontrib>Dyar, M. D.</creatorcontrib><creatorcontrib>Ehlmann, B.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Gasnault, O.</creatorcontrib><creatorcontrib>Grotzinger, J.</creatorcontrib><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Lewin, E.</creatorcontrib><creatorcontrib>Léveillé, R.</creatorcontrib><creatorcontrib>McLennan, S.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Rapin, W.</creatorcontrib><creatorcontrib>Rice, M.</creatorcontrib><creatorcontrib>Squyres, S. W.</creatorcontrib><creatorcontrib>Stack, K.</creatorcontrib><creatorcontrib>Sumner, D. Y.</creatorcontrib><creatorcontrib>Vaniman, D.</creatorcontrib><creatorcontrib>Wellington, D.</creatorcontrib><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><title>Journal of geophysical research. Planets</title><addtitle>J. Geophys. Res. Planets</addtitle><description>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions. Key Points Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</description><subject>alteration</subject><subject>Calcium</subject><subject>Calcium sulfate</subject><subject>ChemCam</subject><subject>Curiosity</subject><subject>Diagenesis</subject><subject>Earth Sciences</subject><subject>Fluvial sediments</subject><subject>Gypsum</subject><subject>LIBS</subject><subject>Lithification</subject><subject>Mars</subject><subject>Sciences of the Universe</subject><subject>Sediments</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Veins (geology)</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpoGGbW3-AoJcW4mYkWZZ1DGbjNNm0UBoCuYixVmaV2utUstNuf320OAmlh85lhpnnHeaDkHcMPjEAfsKBiYslQC7L8hU55KzQmU6V188xaPWGHMV4B8nKlGLikFxV2Fk_9TROXYujow_ObyO1GwxoRxf8H7emzY5WG9dX2J9UU_BD9OOO4khr7By1IcnCMb3CEN-Sgxa76I6e_IJcny2_V-fZ6mv9uTpdZShLLjPZMqZRO1QKG8vA4bpRyIBLXrQtgMobuxaQa11aqa3lrrFaYYm5soUTVizIx7nvBjtzH3yPYWcG9Ob8dGX2uXQLYArEA0vsh5m9D8PPycXR9D5a13W4dcMUDStYyaRQAhL6_h_0bpjCNm2SqFyKQu6PtiDHM2XDEGNw7csEDMz-FebvVyRczPgv37ndf1lzUX9bcuClTKpsVvk4ut8vKgw_TKGEkubmS20ua5A3gl2aW_EI3bKWcw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Nachon, M.</creator><creator>Clegg, S. M.</creator><creator>Mangold, N.</creator><creator>Schröder, S.</creator><creator>Kah, L. C.</creator><creator>Dromart, G.</creator><creator>Ollila, A.</creator><creator>Johnson, J. R.</creator><creator>Oehler, D. Z.</creator><creator>Bridges, J. C.</creator><creator>Le Mouélic, S.</creator><creator>Forni, O.</creator><creator>Wiens, R.C.</creator><creator>Anderson, R. B.</creator><creator>Blaney, D. L.</creator><creator>Bell III, J.F.</creator><creator>Clark, B.</creator><creator>Cousin, A.</creator><creator>Dyar, M. D.</creator><creator>Ehlmann, B.</creator><creator>Fabre, C.</creator><creator>Gasnault, O.</creator><creator>Grotzinger, J.</creator><creator>Lasue, J.</creator><creator>Lewin, E.</creator><creator>Léveillé, R.</creator><creator>McLennan, S.</creator><creator>Maurice, S.</creator><creator>Meslin, P.-Y.</creator><creator>Rapin, W.</creator><creator>Rice, M.</creator><creator>Squyres, S. W.</creator><creator>Stack, K.</creator><creator>Sumner, D. Y.</creator><creator>Vaniman, D.</creator><creator>Wellington, D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0022-0631</orcidid><orcidid>https://orcid.org/0000-0001-8627-4050</orcidid><orcidid>https://orcid.org/0000-0001-6772-9689</orcidid><orcidid>https://orcid.org/0009-0001-2345-270X</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0002-2407-2880</orcidid><orcidid>https://orcid.org/0000-0003-4259-7178</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid></search><sort><creationdate>201409</creationdate><title>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</title><author>Nachon, M. ; Clegg, S. M. ; Mangold, N. ; Schröder, S. ; Kah, L. C. ; Dromart, G. ; Ollila, A. ; Johnson, J. R. ; Oehler, D. Z. ; Bridges, J. C. ; Le Mouélic, S. ; Forni, O. ; Wiens, R.C. ; Anderson, R. B. ; Blaney, D. L. ; Bell III, J.F. ; Clark, B. ; Cousin, A. ; Dyar, M. D. ; Ehlmann, B. ; Fabre, C. ; Gasnault, O. ; Grotzinger, J. ; Lasue, J. ; Lewin, E. ; Léveillé, R. ; McLennan, S. ; Maurice, S. ; Meslin, P.-Y. ; Rapin, W. ; Rice, M. ; Squyres, S. W. ; Stack, K. ; Sumner, D. Y. ; Vaniman, D. ; Wellington, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5825-5f119a9ea77abc10eadb7a102526ff0074bcd304998c59cc2ebc97a8a47c6e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alteration</topic><topic>Calcium</topic><topic>Calcium sulfate</topic><topic>ChemCam</topic><topic>Curiosity</topic><topic>Diagenesis</topic><topic>Earth Sciences</topic><topic>Fluvial sediments</topic><topic>Gypsum</topic><topic>LIBS</topic><topic>Lithification</topic><topic>Mars</topic><topic>Sciences of the Universe</topic><topic>Sediments</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Veins (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nachon, M.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Mangold, N.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Kah, L. C.</creatorcontrib><creatorcontrib>Dromart, G.</creatorcontrib><creatorcontrib>Ollila, A.</creatorcontrib><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Oehler, D. Z.</creatorcontrib><creatorcontrib>Bridges, J. C.</creatorcontrib><creatorcontrib>Le Mouélic, S.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Wiens, R.C.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><creatorcontrib>Blaney, D. L.</creatorcontrib><creatorcontrib>Bell III, J.F.</creatorcontrib><creatorcontrib>Clark, B.</creatorcontrib><creatorcontrib>Cousin, A.</creatorcontrib><creatorcontrib>Dyar, M. D.</creatorcontrib><creatorcontrib>Ehlmann, B.</creatorcontrib><creatorcontrib>Fabre, C.</creatorcontrib><creatorcontrib>Gasnault, O.</creatorcontrib><creatorcontrib>Grotzinger, J.</creatorcontrib><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Lewin, E.</creatorcontrib><creatorcontrib>Léveillé, R.</creatorcontrib><creatorcontrib>McLennan, S.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Rapin, W.</creatorcontrib><creatorcontrib>Rice, M.</creatorcontrib><creatorcontrib>Squyres, S. W.</creatorcontrib><creatorcontrib>Stack, K.</creatorcontrib><creatorcontrib>Sumner, D. Y.</creatorcontrib><creatorcontrib>Vaniman, D.</creatorcontrib><creatorcontrib>Wellington, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nachon, M.</au><au>Clegg, S. M.</au><au>Mangold, N.</au><au>Schröder, S.</au><au>Kah, L. C.</au><au>Dromart, G.</au><au>Ollila, A.</au><au>Johnson, J. R.</au><au>Oehler, D. Z.</au><au>Bridges, J. C.</au><au>Le Mouélic, S.</au><au>Forni, O.</au><au>Wiens, R.C.</au><au>Anderson, R. B.</au><au>Blaney, D. L.</au><au>Bell III, J.F.</au><au>Clark, B.</au><au>Cousin, A.</au><au>Dyar, M. D.</au><au>Ehlmann, B.</au><au>Fabre, C.</au><au>Gasnault, O.</au><au>Grotzinger, J.</au><au>Lasue, J.</au><au>Lewin, E.</au><au>Léveillé, R.</au><au>McLennan, S.</au><au>Maurice, S.</au><au>Meslin, P.-Y.</au><au>Rapin, W.</au><au>Rice, M.</au><au>Squyres, S. W.</au><au>Stack, K.</au><au>Sumner, D. Y.</au><au>Vaniman, D.</au><au>Wellington, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars</atitle><jtitle>Journal of geophysical research. Planets</jtitle><addtitle>J. Geophys. Res. Planets</addtitle><date>2014-09</date><risdate>2014</risdate><volume>119</volume><issue>9</issue><spage>1991</spage><epage>2016</epage><pages>1991-2016</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The Curiosity rover has analyzed abundant light‐toned fracture‐fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur‐rich fluids may have originated in previously precipitated sulfate‐rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions. Key Points Calcium sulfate is detected by ChemCam in veins crossing fine‐grained sedimentsVeins cross various sediments as a result of postdepositional diagenesisCalcium sulfate veins formed through prolonged subsurface fluid circulation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JE004588</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0022-0631</orcidid><orcidid>https://orcid.org/0000-0001-8627-4050</orcidid><orcidid>https://orcid.org/0000-0001-6772-9689</orcidid><orcidid>https://orcid.org/0009-0001-2345-270X</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0002-2407-2880</orcidid><orcidid>https://orcid.org/0000-0003-4259-7178</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2014-09, Vol.119 (9), p.1991-2016
issn 2169-9097
2169-9100
language eng
recordid cdi_hal_primary_oai_HAL_hal_01301703v1
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects alteration
Calcium
Calcium sulfate
ChemCam
Curiosity
Diagenesis
Earth Sciences
Fluvial sediments
Gypsum
LIBS
Lithification
Mars
Sciences of the Universe
Sediments
Sulfates
Sulfur
Veins (geology)
title Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20sulfate%20veins%20characterized%20by%20ChemCam/Curiosity%20at%20Gale%20crater,%20Mars&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Nachon,%20M.&rft.date=2014-09&rft.volume=119&rft.issue=9&rft.spage=1991&rft.epage=2016&rft.pages=1991-2016&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/2013JE004588&rft_dat=%3Cproquest_hal_p%3E1618153730%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645365691&rft_id=info:pmid/&rfr_iscdi=true