p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis

Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2016-04, Vol.448, p.319-339
Hauptverfasser: Leonarduzzi, R., Wendt, H., Abry, P., Jaffard, S., Melot, C., Roux, S.G., Torres, M.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue
container_start_page 319
container_title Physica A
container_volume 448
creator Leonarduzzi, R.
Wendt, H.
Abry, P.
Jaffard, S.
Melot, C.
Roux, S.G.
Torres, M.E.
description Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the Hölder exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the Hölder exponent with a collection of novel exponents for measuring local regularity, the p-exponents. One of the major virtues of p-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the p-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed p-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of p-exponents and the rich classification of local singularities it permits. •We propose to base multifractal analysis on p-exponents and p-leaders.•This tool can directly be used with non locally bounded data (negative regularity).•Estimation performance improves as the parameter p is decreased.•We provide theoretical and practical connections with Multifractal DFA.
doi_str_mv 10.1016/j.physa.2015.12.035
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01291278v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437115010638</els_id><sourcerecordid>S0378437115010638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-7abdfe1db9958231a1ea9dcb5cb893b75c5bc057bf5f3142694782621032bee73</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKe_wEuugq15Sbu0goch6gYTRfQc0uSVZdS2JNlw_95ukx09BV6-78H7CLkGlgKDyd0q7ZfboFPOIE-Bp0zkJ2QEhRQJByhPyYgJWSSZkHBOLkJYMcZACj4i2Cf403cttpHq1tI-aVBb9OGWvmsf6Xx-T1_XTXS11ybqZoB0sw0upPQDGx1d1wYaO2oxemwtWlo3axPX-58jfEnOat0EvPp7x-Tr-enzcZYs3l7mj9NFYjIpYyJ1ZWsEW5VlXnABGlCX1lS5qYpSVDI3eWVYLqs6rwVkfFJmsuATDkzwClGKMbk57F3qRvXefWu_VZ12ajZdqN2MAS-By2IDAysOrPFdCB7rowBM7aqqldpXVbuqCrgaqg7Ww8HC4YyNQ6-CcdgatM6jicp27l__FzmhgkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Leonarduzzi, R. ; Wendt, H. ; Abry, P. ; Jaffard, S. ; Melot, C. ; Roux, S.G. ; Torres, M.E.</creator><creatorcontrib>Leonarduzzi, R. ; Wendt, H. ; Abry, P. ; Jaffard, S. ; Melot, C. ; Roux, S.G. ; Torres, M.E.</creatorcontrib><description>Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the Hölder exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the Hölder exponent with a collection of novel exponents for measuring local regularity, the p-exponents. One of the major virtues of p-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the p-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed p-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of p-exponents and the rich classification of local singularities it permits. •We propose to base multifractal analysis on p-exponents and p-leaders.•This tool can directly be used with non locally bounded data (negative regularity).•Estimation performance improves as the parameter p is decreased.•We provide theoretical and practical connections with Multifractal DFA.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>EISSN: 0378-4371</identifier><identifier>DOI: 10.1016/j.physa.2015.12.035</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-exponent ; Classical Analysis and ODEs ; Mathematics ; Multifractal analysis ; Multifractal detrended fluctuation analysis ; Negative regularity ; Wavelet [formula omitted]-leaders</subject><ispartof>Physica A, 2016-04, Vol.448, p.319-339</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-7abdfe1db9958231a1ea9dcb5cb893b75c5bc057bf5f3142694782621032bee73</citedby><cites>FETCH-LOGICAL-c477t-7abdfe1db9958231a1ea9dcb5cb893b75c5bc057bf5f3142694782621032bee73</cites><orcidid>0000-0003-1671-0608 ; 0000-0001-8561-1270 ; 0000-0002-7096-8290 ; 0000-0001-6930-3083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physa.2015.12.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01291278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leonarduzzi, R.</creatorcontrib><creatorcontrib>Wendt, H.</creatorcontrib><creatorcontrib>Abry, P.</creatorcontrib><creatorcontrib>Jaffard, S.</creatorcontrib><creatorcontrib>Melot, C.</creatorcontrib><creatorcontrib>Roux, S.G.</creatorcontrib><creatorcontrib>Torres, M.E.</creatorcontrib><title>p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis</title><title>Physica A</title><description>Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the Hölder exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the Hölder exponent with a collection of novel exponents for measuring local regularity, the p-exponents. One of the major virtues of p-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the p-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed p-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of p-exponents and the rich classification of local singularities it permits. •We propose to base multifractal analysis on p-exponents and p-leaders.•This tool can directly be used with non locally bounded data (negative regularity).•Estimation performance improves as the parameter p is decreased.•We provide theoretical and practical connections with Multifractal DFA.</description><subject>[formula omitted]-exponent</subject><subject>Classical Analysis and ODEs</subject><subject>Mathematics</subject><subject>Multifractal analysis</subject><subject>Multifractal detrended fluctuation analysis</subject><subject>Negative regularity</subject><subject>Wavelet [formula omitted]-leaders</subject><issn>0378-4371</issn><issn>1873-2119</issn><issn>0378-4371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUgIMoOKe_wEuugq15Sbu0goch6gYTRfQc0uSVZdS2JNlw_95ukx09BV6-78H7CLkGlgKDyd0q7ZfboFPOIE-Bp0zkJ2QEhRQJByhPyYgJWSSZkHBOLkJYMcZACj4i2Cf403cttpHq1tI-aVBb9OGWvmsf6Xx-T1_XTXS11ybqZoB0sw0upPQDGx1d1wYaO2oxemwtWlo3axPX-58jfEnOat0EvPp7x-Tr-enzcZYs3l7mj9NFYjIpYyJ1ZWsEW5VlXnABGlCX1lS5qYpSVDI3eWVYLqs6rwVkfFJmsuATDkzwClGKMbk57F3qRvXefWu_VZ12ajZdqN2MAS-By2IDAysOrPFdCB7rowBM7aqqldpXVbuqCrgaqg7Ww8HC4YyNQ6-CcdgatM6jicp27l__FzmhgkM</recordid><startdate>20160415</startdate><enddate>20160415</enddate><creator>Leonarduzzi, R.</creator><creator>Wendt, H.</creator><creator>Abry, P.</creator><creator>Jaffard, S.</creator><creator>Melot, C.</creator><creator>Roux, S.G.</creator><creator>Torres, M.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1671-0608</orcidid><orcidid>https://orcid.org/0000-0001-8561-1270</orcidid><orcidid>https://orcid.org/0000-0002-7096-8290</orcidid><orcidid>https://orcid.org/0000-0001-6930-3083</orcidid></search><sort><creationdate>20160415</creationdate><title>p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis</title><author>Leonarduzzi, R. ; Wendt, H. ; Abry, P. ; Jaffard, S. ; Melot, C. ; Roux, S.G. ; Torres, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-7abdfe1db9958231a1ea9dcb5cb893b75c5bc057bf5f3142694782621032bee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>[formula omitted]-exponent</topic><topic>Classical Analysis and ODEs</topic><topic>Mathematics</topic><topic>Multifractal analysis</topic><topic>Multifractal detrended fluctuation analysis</topic><topic>Negative regularity</topic><topic>Wavelet [formula omitted]-leaders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonarduzzi, R.</creatorcontrib><creatorcontrib>Wendt, H.</creatorcontrib><creatorcontrib>Abry, P.</creatorcontrib><creatorcontrib>Jaffard, S.</creatorcontrib><creatorcontrib>Melot, C.</creatorcontrib><creatorcontrib>Roux, S.G.</creatorcontrib><creatorcontrib>Torres, M.E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonarduzzi, R.</au><au>Wendt, H.</au><au>Abry, P.</au><au>Jaffard, S.</au><au>Melot, C.</au><au>Roux, S.G.</au><au>Torres, M.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis</atitle><jtitle>Physica A</jtitle><date>2016-04-15</date><risdate>2016</risdate><volume>448</volume><spage>319</spage><epage>339</epage><pages>319-339</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><eissn>0378-4371</eissn><abstract>Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the Hölder exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the Hölder exponent with a collection of novel exponents for measuring local regularity, the p-exponents. One of the major virtues of p-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the p-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed p-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of p-exponents and the rich classification of local singularities it permits. •We propose to base multifractal analysis on p-exponents and p-leaders.•This tool can directly be used with non locally bounded data (negative regularity).•Estimation performance improves as the parameter p is decreased.•We provide theoretical and practical connections with Multifractal DFA.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2015.12.035</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1671-0608</orcidid><orcidid>https://orcid.org/0000-0001-8561-1270</orcidid><orcidid>https://orcid.org/0000-0002-7096-8290</orcidid><orcidid>https://orcid.org/0000-0001-6930-3083</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2016-04, Vol.448, p.319-339
issn 0378-4371
1873-2119
0378-4371
language eng
recordid cdi_hal_primary_oai_HAL_hal_01291278v1
source ScienceDirect Journals (5 years ago - present)
subjects [formula omitted]-exponent
Classical Analysis and ODEs
Mathematics
Multifractal analysis
Multifractal detrended fluctuation analysis
Negative regularity
Wavelet [formula omitted]-leaders
title p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p-exponent%20and%20p-leaders,%20Part%20II:%20Multifractal%20analysis.%20Relations%20to%20detrended%20fluctuation%20analysis&rft.jtitle=Physica%20A&rft.au=Leonarduzzi,%20R.&rft.date=2016-04-15&rft.volume=448&rft.spage=319&rft.epage=339&rft.pages=319-339&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2015.12.035&rft_dat=%3Celsevier_hal_p%3ES0378437115010638%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378437115010638&rfr_iscdi=true