Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel

Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2016-01, Vol.86 (1-2), p.21-38
Hauptverfasser: Chang, Hyung-Jun, Cordero, Nicolas M., Déprés, Christophe, Fivel, Marc, Forest, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1-2
container_start_page 21
container_title Archive of applied mechanics (1991)
container_volume 86
creator Chang, Hyung-Jun
Cordero, Nicolas M.
Déprés, Christophe
Fivel, Marc
Forest, Samuel
description Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensional discrete dislocation dynamics (DDD), micromorphic crystal plasticity (Microcurl) and field dislocation mechanics (FDM). The analysis is first limited to single slip with a slip plane perpendicular to the channel walls. In DDD simulations, it is found that the overall work-hardening is strongly dependent on distance between neighbor slip layers. The size dependence disappears when the neighbor layers are close enough to interact with each other. It is confirmed by direct comparison between DDD simulations and two analytical expressions derived from simplified model of multilayer pile-ups. Distributions of slip and GNDs are presented and analyzed for various channel sizes. The cases of inclined slip plane and of double slip systems in a channel are also considered and investigated. The two alternative crystal plasticity theories, Microcurl and FDM, are then found to reproduce the results of DDD. In particular, quantitative correspondence is found between the Microcurl and DDD results.
doi_str_mv 10.1007/s00419-015-1099-z
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01288962v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01288962v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c4c2b01a3df29d58ecfc83eb1f49c020972ea50848ae5d837500462e7a1547033</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEuXjB7B5ZTCc7biJx6riSypigdm6Ok7rynUiOy0KG_-cVEWMTD5Z7510j5AbDnccoLzPAAXXDLhiHLRmXydkwgspGEwrfkomoKVmXEl5Ti5y3sCIKwET8v3qbWq3berW3lKbhtxjoF3A3Hvr-4HuXcq7TGufbXK9Owyhtdj7NtJ6iLj1NlOMGIbsM20but2F3gccXKKdD47tOrrGVLvo44r6SJFGTKn9pHaNMbpwRc4aDNld_76X5OPx4X3-zBZvTy_z2YJZqUXPbGHFEjjKuhG6VpWzja2kW_Km0BYE6FI4VFAVFTpVV7JU44lT4UrkqihByktye9y7xmC65LeYBtOiN8-zhTn8ARdVpadiz0eWH9mxTc7JNX8CB3PobY69R0eZQ2_zNTri6OSRjSuXzKbdpTFM_kf6AeD-hmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, Hyung-Jun ; Cordero, Nicolas M. ; Déprés, Christophe ; Fivel, Marc ; Forest, Samuel</creator><creatorcontrib>Chang, Hyung-Jun ; Cordero, Nicolas M. ; Déprés, Christophe ; Fivel, Marc ; Forest, Samuel</creatorcontrib><description>Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensional discrete dislocation dynamics (DDD), micromorphic crystal plasticity (Microcurl) and field dislocation mechanics (FDM). The analysis is first limited to single slip with a slip plane perpendicular to the channel walls. In DDD simulations, it is found that the overall work-hardening is strongly dependent on distance between neighbor slip layers. The size dependence disappears when the neighbor layers are close enough to interact with each other. It is confirmed by direct comparison between DDD simulations and two analytical expressions derived from simplified model of multilayer pile-ups. Distributions of slip and GNDs are presented and analyzed for various channel sizes. The cases of inclined slip plane and of double slip systems in a channel are also considered and investigated. The two alternative crystal plasticity theories, Microcurl and FDM, are then found to reproduce the results of DDD. In particular, quantitative correspondence is found between the Microcurl and DDD results.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-015-1099-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Condensed Matter ; Engineering ; Materials Science ; Physics ; Special ; Theoretical and Applied Mechanics</subject><ispartof>Archive of applied mechanics (1991), 2016-01, Vol.86 (1-2), p.21-38</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c4c2b01a3df29d58ecfc83eb1f49c020972ea50848ae5d837500462e7a1547033</citedby><cites>FETCH-LOGICAL-c392t-c4c2b01a3df29d58ecfc83eb1f49c020972ea50848ae5d837500462e7a1547033</cites><orcidid>0000-0002-8869-3942 ; 0000-0002-0393-2191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-015-1099-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-015-1099-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-01288962$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Hyung-Jun</creatorcontrib><creatorcontrib>Cordero, Nicolas M.</creatorcontrib><creatorcontrib>Déprés, Christophe</creatorcontrib><creatorcontrib>Fivel, Marc</creatorcontrib><creatorcontrib>Forest, Samuel</creatorcontrib><title>Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensional discrete dislocation dynamics (DDD), micromorphic crystal plasticity (Microcurl) and field dislocation mechanics (FDM). The analysis is first limited to single slip with a slip plane perpendicular to the channel walls. In DDD simulations, it is found that the overall work-hardening is strongly dependent on distance between neighbor slip layers. The size dependence disappears when the neighbor layers are close enough to interact with each other. It is confirmed by direct comparison between DDD simulations and two analytical expressions derived from simplified model of multilayer pile-ups. Distributions of slip and GNDs are presented and analyzed for various channel sizes. The cases of inclined slip plane and of double slip systems in a channel are also considered and investigated. The two alternative crystal plasticity theories, Microcurl and FDM, are then found to reproduce the results of DDD. In particular, quantitative correspondence is found between the Microcurl and DDD results.</description><subject>Classical Mechanics</subject><subject>Condensed Matter</subject><subject>Engineering</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Special</subject><subject>Theoretical and Applied Mechanics</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEuXjB7B5ZTCc7biJx6riSypigdm6Ok7rynUiOy0KG_-cVEWMTD5Z7510j5AbDnccoLzPAAXXDLhiHLRmXydkwgspGEwrfkomoKVmXEl5Ti5y3sCIKwET8v3qbWq3berW3lKbhtxjoF3A3Hvr-4HuXcq7TGufbXK9Owyhtdj7NtJ6iLj1NlOMGIbsM20but2F3gccXKKdD47tOrrGVLvo44r6SJFGTKn9pHaNMbpwRc4aDNld_76X5OPx4X3-zBZvTy_z2YJZqUXPbGHFEjjKuhG6VpWzja2kW_Km0BYE6FI4VFAVFTpVV7JU44lT4UrkqihByktye9y7xmC65LeYBtOiN8-zhTn8ARdVpadiz0eWH9mxTc7JNX8CB3PobY69R0eZQ2_zNTri6OSRjSuXzKbdpTFM_kf6AeD-hmc</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Chang, Hyung-Jun</creator><creator>Cordero, Nicolas M.</creator><creator>Déprés, Christophe</creator><creator>Fivel, Marc</creator><creator>Forest, Samuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8869-3942</orcidid><orcidid>https://orcid.org/0000-0002-0393-2191</orcidid></search><sort><creationdate>20160101</creationdate><title>Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel</title><author>Chang, Hyung-Jun ; Cordero, Nicolas M. ; Déprés, Christophe ; Fivel, Marc ; Forest, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c4c2b01a3df29d58ecfc83eb1f49c020972ea50848ae5d837500462e7a1547033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter</topic><topic>Engineering</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Special</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Hyung-Jun</creatorcontrib><creatorcontrib>Cordero, Nicolas M.</creatorcontrib><creatorcontrib>Déprés, Christophe</creatorcontrib><creatorcontrib>Fivel, Marc</creatorcontrib><creatorcontrib>Forest, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Hyung-Jun</au><au>Cordero, Nicolas M.</au><au>Déprés, Christophe</au><au>Fivel, Marc</au><au>Forest, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>86</volume><issue>1-2</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensional discrete dislocation dynamics (DDD), micromorphic crystal plasticity (Microcurl) and field dislocation mechanics (FDM). The analysis is first limited to single slip with a slip plane perpendicular to the channel walls. In DDD simulations, it is found that the overall work-hardening is strongly dependent on distance between neighbor slip layers. The size dependence disappears when the neighbor layers are close enough to interact with each other. It is confirmed by direct comparison between DDD simulations and two analytical expressions derived from simplified model of multilayer pile-ups. Distributions of slip and GNDs are presented and analyzed for various channel sizes. The cases of inclined slip plane and of double slip systems in a channel are also considered and investigated. The two alternative crystal plasticity theories, Microcurl and FDM, are then found to reproduce the results of DDD. In particular, quantitative correspondence is found between the Microcurl and DDD results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-015-1099-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8869-3942</orcidid><orcidid>https://orcid.org/0000-0002-0393-2191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2016-01, Vol.86 (1-2), p.21-38
issn 0939-1533
1432-0681
language eng
recordid cdi_hal_primary_oai_HAL_hal_01288962v1
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Condensed Matter
Engineering
Materials Science
Physics
Special
Theoretical and Applied Mechanics
title Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromorphic%20crystal%20plasticity%20versus%20discrete%20dislocation%20dynamics%20analysis%20of%20multilayer%20pile-up%20hardening%20in%20a%20narrow%20channel&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Chang,%20Hyung-Jun&rft.date=2016-01-01&rft.volume=86&rft.issue=1-2&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-015-1099-z&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01288962v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true