Group and sparse group partial least square approaches applied in genomics context
The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2016-01, Vol.32 (1), p.35-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Bioinformatics |
container_volume | 32 |
creator | Liquet, Benoît de Micheaux, Pierre Lafaye Hejblum, Boris P Thiébaut, Rodolphe |
description | The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach.
We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine.
The approach is implemented in a comprehensive R package called sgPLS available on the CRAN.
b.liquet@uq.edu.au
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btv535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01288891v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1750432455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</originalsourceid><addsrcrecordid>eNqNkV1PwyAYhYnR-DH9CRou9WKOtxRoL43xK1liYvSaUAoT05YOWqP_XubmEu92xcnheeHAQegcyDWQks4q511nfWjV4HScVcMno2wPHQPlYpoXAPtbTegROonxgxDCCOOH6CjjlBUiE8fo5SH4sceqq3HsVYgGL36NpAenGtwYFQccl6MKBqu-D17pdxNXsnGmxq7DC9P5NmXA2neD-RpO0YFVTTRnm3WC3u7vXm8fp_Pnh6fbm_lU54wP01yLklmqra0YpTXLdVYKsEqLGiykDcoEt1oRzSuouRVWpPgri4OuWEYn6Gp97rtqZB9cq8K39MrJx5u5XHkEsqIoSviExF6u2fSA5WjiIFsXtWka1Rk_Rgmi4FACz_IdUJ6l3ysJ2QFlJKdZzlhC2RrVwccYjN0mBiJXhcr_hcp1oWnuYnPFWLWm3k79NUh_AAGJoXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750432455</pqid></control><display><type>article</type><title>Group and sparse group partial least square approaches applied in genomics context</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</creator><creatorcontrib>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</creatorcontrib><description>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach.
We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine.
The approach is implemented in a comprehensive R package called sgPLS available on the CRAN.
b.liquet@uq.edu.au
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv535</identifier><identifier>PMID: 26358727</identifier><language>eng</language><publisher>England: Oxford University Press (OUP)</publisher><subject>AIDS Vaccines - immunology ; Algorithms ; Bioinformatics ; Computer Simulation ; Cytokines ; Gene expression ; Genomics - methods ; Human immunodeficiency virus ; Humans ; Least squares method ; Least-Squares Analysis ; Life Sciences ; Markers ; Sample Size ; Santé publique et épidémiologie ; Secretions ; Statistical methods</subject><ispartof>Bioinformatics, 2016-01, Vol.32 (1), p.35-42</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</citedby><cites>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</cites><orcidid>0000-0002-5235-3962 ; 0000-0002-8136-2294 ; 0000-0002-0247-5136 ; 0000-0003-0646-452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26358727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01288891$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liquet, Benoît</creatorcontrib><creatorcontrib>de Micheaux, Pierre Lafaye</creatorcontrib><creatorcontrib>Hejblum, Boris P</creatorcontrib><creatorcontrib>Thiébaut, Rodolphe</creatorcontrib><title>Group and sparse group partial least square approaches applied in genomics context</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach.
We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine.
The approach is implemented in a comprehensive R package called sgPLS available on the CRAN.
b.liquet@uq.edu.au
Supplementary data are available at Bioinformatics online.</description><subject>AIDS Vaccines - immunology</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer Simulation</subject><subject>Cytokines</subject><subject>Gene expression</subject><subject>Genomics - methods</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Markers</subject><subject>Sample Size</subject><subject>Santé publique et épidémiologie</subject><subject>Secretions</subject><subject>Statistical methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1PwyAYhYnR-DH9CRou9WKOtxRoL43xK1liYvSaUAoT05YOWqP_XubmEu92xcnheeHAQegcyDWQks4q511nfWjV4HScVcMno2wPHQPlYpoXAPtbTegROonxgxDCCOOH6CjjlBUiE8fo5SH4sceqq3HsVYgGL36NpAenGtwYFQccl6MKBqu-D17pdxNXsnGmxq7DC9P5NmXA2neD-RpO0YFVTTRnm3WC3u7vXm8fp_Pnh6fbm_lU54wP01yLklmqra0YpTXLdVYKsEqLGiykDcoEt1oRzSuouRVWpPgri4OuWEYn6Gp97rtqZB9cq8K39MrJx5u5XHkEsqIoSviExF6u2fSA5WjiIFsXtWka1Rk_Rgmi4FACz_IdUJ6l3ysJ2QFlJKdZzlhC2RrVwccYjN0mBiJXhcr_hcp1oWnuYnPFWLWm3k79NUh_AAGJoXo</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liquet, Benoît</creator><creator>de Micheaux, Pierre Lafaye</creator><creator>Hejblum, Boris P</creator><creator>Thiébaut, Rodolphe</creator><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5235-3962</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-0247-5136</orcidid><orcidid>https://orcid.org/0000-0003-0646-452X</orcidid></search><sort><creationdate>20160101</creationdate><title>Group and sparse group partial least square approaches applied in genomics context</title><author>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AIDS Vaccines - immunology</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer Simulation</topic><topic>Cytokines</topic><topic>Gene expression</topic><topic>Genomics - methods</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Markers</topic><topic>Sample Size</topic><topic>Santé publique et épidémiologie</topic><topic>Secretions</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liquet, Benoît</creatorcontrib><creatorcontrib>de Micheaux, Pierre Lafaye</creatorcontrib><creatorcontrib>Hejblum, Boris P</creatorcontrib><creatorcontrib>Thiébaut, Rodolphe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liquet, Benoît</au><au>de Micheaux, Pierre Lafaye</au><au>Hejblum, Boris P</au><au>Thiébaut, Rodolphe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group and sparse group partial least square approaches applied in genomics context</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>32</volume><issue>1</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach.
We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine.
The approach is implemented in a comprehensive R package called sgPLS available on the CRAN.
b.liquet@uq.edu.au
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press (OUP)</pub><pmid>26358727</pmid><doi>10.1093/bioinformatics/btv535</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5235-3962</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-0247-5136</orcidid><orcidid>https://orcid.org/0000-0003-0646-452X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2016-01, Vol.32 (1), p.35-42 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01288891v1 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | AIDS Vaccines - immunology Algorithms Bioinformatics Computer Simulation Cytokines Gene expression Genomics - methods Human immunodeficiency virus Humans Least squares method Least-Squares Analysis Life Sciences Markers Sample Size Santé publique et épidémiologie Secretions Statistical methods |
title | Group and sparse group partial least square approaches applied in genomics context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20and%20sparse%20group%20partial%20least%20square%20approaches%20applied%20in%20genomics%20context&rft.jtitle=Bioinformatics&rft.au=Liquet,%20Beno%C3%AEt&rft.date=2016-01-01&rft.volume=32&rft.issue=1&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv535&rft_dat=%3Cproquest_hal_p%3E1750432455%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750432455&rft_id=info:pmid/26358727&rfr_iscdi=true |