Group and sparse group partial least square approaches applied in genomics context

The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2016-01, Vol.32 (1), p.35-42
Hauptverfasser: Liquet, Benoît, de Micheaux, Pierre Lafaye, Hejblum, Boris P, Thiébaut, Rodolphe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 35
container_title Bioinformatics
container_volume 32
creator Liquet, Benoît
de Micheaux, Pierre Lafaye
Hejblum, Boris P
Thiébaut, Rodolphe
description The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach. We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine. The approach is implemented in a comprehensive R package called sgPLS available on the CRAN. b.liquet@uq.edu.au Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btv535
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01288891v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1750432455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</originalsourceid><addsrcrecordid>eNqNkV1PwyAYhYnR-DH9CRou9WKOtxRoL43xK1liYvSaUAoT05YOWqP_XubmEu92xcnheeHAQegcyDWQks4q511nfWjV4HScVcMno2wPHQPlYpoXAPtbTegROonxgxDCCOOH6CjjlBUiE8fo5SH4sceqq3HsVYgGL36NpAenGtwYFQccl6MKBqu-D17pdxNXsnGmxq7DC9P5NmXA2neD-RpO0YFVTTRnm3WC3u7vXm8fp_Pnh6fbm_lU54wP01yLklmqra0YpTXLdVYKsEqLGiykDcoEt1oRzSuouRVWpPgri4OuWEYn6Gp97rtqZB9cq8K39MrJx5u5XHkEsqIoSviExF6u2fSA5WjiIFsXtWka1Rk_Rgmi4FACz_IdUJ6l3ysJ2QFlJKdZzlhC2RrVwccYjN0mBiJXhcr_hcp1oWnuYnPFWLWm3k79NUh_AAGJoXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750432455</pqid></control><display><type>article</type><title>Group and sparse group partial least square approaches applied in genomics context</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</creator><creatorcontrib>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</creatorcontrib><description>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach. We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine. The approach is implemented in a comprehensive R package called sgPLS available on the CRAN. b.liquet@uq.edu.au Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv535</identifier><identifier>PMID: 26358727</identifier><language>eng</language><publisher>England: Oxford University Press (OUP)</publisher><subject>AIDS Vaccines - immunology ; Algorithms ; Bioinformatics ; Computer Simulation ; Cytokines ; Gene expression ; Genomics - methods ; Human immunodeficiency virus ; Humans ; Least squares method ; Least-Squares Analysis ; Life Sciences ; Markers ; Sample Size ; Santé publique et épidémiologie ; Secretions ; Statistical methods</subject><ispartof>Bioinformatics, 2016-01, Vol.32 (1), p.35-42</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</citedby><cites>FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</cites><orcidid>0000-0002-5235-3962 ; 0000-0002-8136-2294 ; 0000-0002-0247-5136 ; 0000-0003-0646-452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26358727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01288891$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liquet, Benoît</creatorcontrib><creatorcontrib>de Micheaux, Pierre Lafaye</creatorcontrib><creatorcontrib>Hejblum, Boris P</creatorcontrib><creatorcontrib>Thiébaut, Rodolphe</creatorcontrib><title>Group and sparse group partial least square approaches applied in genomics context</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach. We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine. The approach is implemented in a comprehensive R package called sgPLS available on the CRAN. b.liquet@uq.edu.au Supplementary data are available at Bioinformatics online.</description><subject>AIDS Vaccines - immunology</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer Simulation</subject><subject>Cytokines</subject><subject>Gene expression</subject><subject>Genomics - methods</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Markers</subject><subject>Sample Size</subject><subject>Santé publique et épidémiologie</subject><subject>Secretions</subject><subject>Statistical methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1PwyAYhYnR-DH9CRou9WKOtxRoL43xK1liYvSaUAoT05YOWqP_XubmEu92xcnheeHAQegcyDWQks4q511nfWjV4HScVcMno2wPHQPlYpoXAPtbTegROonxgxDCCOOH6CjjlBUiE8fo5SH4sceqq3HsVYgGL36NpAenGtwYFQccl6MKBqu-D17pdxNXsnGmxq7DC9P5NmXA2neD-RpO0YFVTTRnm3WC3u7vXm8fp_Pnh6fbm_lU54wP01yLklmqra0YpTXLdVYKsEqLGiykDcoEt1oRzSuouRVWpPgri4OuWEYn6Gp97rtqZB9cq8K39MrJx5u5XHkEsqIoSviExF6u2fSA5WjiIFsXtWka1Rk_Rgmi4FACz_IdUJ6l3ysJ2QFlJKdZzlhC2RrVwccYjN0mBiJXhcr_hcp1oWnuYnPFWLWm3k79NUh_AAGJoXo</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Liquet, Benoît</creator><creator>de Micheaux, Pierre Lafaye</creator><creator>Hejblum, Boris P</creator><creator>Thiébaut, Rodolphe</creator><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5235-3962</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-0247-5136</orcidid><orcidid>https://orcid.org/0000-0003-0646-452X</orcidid></search><sort><creationdate>20160101</creationdate><title>Group and sparse group partial least square approaches applied in genomics context</title><author>Liquet, Benoît ; de Micheaux, Pierre Lafaye ; Hejblum, Boris P ; Thiébaut, Rodolphe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-4c795f3cffb533d54c2971fac7d1f1f3c3576fca0c6b1d6f7f705076fc61cb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AIDS Vaccines - immunology</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer Simulation</topic><topic>Cytokines</topic><topic>Gene expression</topic><topic>Genomics - methods</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Markers</topic><topic>Sample Size</topic><topic>Santé publique et épidémiologie</topic><topic>Secretions</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liquet, Benoît</creatorcontrib><creatorcontrib>de Micheaux, Pierre Lafaye</creatorcontrib><creatorcontrib>Hejblum, Boris P</creatorcontrib><creatorcontrib>Thiébaut, Rodolphe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liquet, Benoît</au><au>de Micheaux, Pierre Lafaye</au><au>Hejblum, Boris P</au><au>Thiébaut, Rodolphe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group and sparse group partial least square approaches applied in genomics context</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>32</volume><issue>1</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>The association between two blocks of 'omics' data brings challenging issues in computational biology due to their size and complexity. Here, we focus on a class of multivariate statistical methods called partial least square (PLS). Sparse version of PLS (sPLS) operates integration of two datasets while simultaneously selecting the contributing variables. However, these methods do not take into account the important structural or group effects due to the relationship between markers among biological pathways. Hence, considering the predefined groups of markers (e.g. genesets), this could improve the relevance and the efficacy of the PLS approach. We propose two PLS extensions called group PLS (gPLS) and sparse gPLS (sgPLS). Our algorithm enables to study the relationship between two different types of omics data (e.g. SNP and gene expression) or between an omics dataset and multivariate phenotypes (e.g. cytokine secretion). We demonstrate the good performance of gPLS and sgPLS compared with the sPLS in the context of grouped data. Then, these methods are compared through an HIV therapeutic vaccine trial. Our approaches provide parsimonious models to reveal the relationship between gene abundance and the immunological response to the vaccine. The approach is implemented in a comprehensive R package called sgPLS available on the CRAN. b.liquet@uq.edu.au Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press (OUP)</pub><pmid>26358727</pmid><doi>10.1093/bioinformatics/btv535</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5235-3962</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-0247-5136</orcidid><orcidid>https://orcid.org/0000-0003-0646-452X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2016-01, Vol.32 (1), p.35-42
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_hal_primary_oai_HAL_hal_01288891v1
source MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects AIDS Vaccines - immunology
Algorithms
Bioinformatics
Computer Simulation
Cytokines
Gene expression
Genomics - methods
Human immunodeficiency virus
Humans
Least squares method
Least-Squares Analysis
Life Sciences
Markers
Sample Size
Santé publique et épidémiologie
Secretions
Statistical methods
title Group and sparse group partial least square approaches applied in genomics context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20and%20sparse%20group%20partial%20least%20square%20approaches%20applied%20in%20genomics%20context&rft.jtitle=Bioinformatics&rft.au=Liquet,%20Beno%C3%AEt&rft.date=2016-01-01&rft.volume=32&rft.issue=1&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv535&rft_dat=%3Cproquest_hal_p%3E1750432455%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750432455&rft_id=info:pmid/26358727&rfr_iscdi=true