The class number one problem for some non-normal CM-fields of degree 2p
To date, the class number one problem for non-normal CM-fields is solved only for quartic CM-fields. Here, we solve it for a family of non-normal CM-fields of degree 2p, p⩾3 and odd prime. We determine all the non-isomorphic non-normal CM-fields of degree 2p, containing a real cyclic field of degree...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2012-08, Vol.132 (8), p.1793-1806 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1806 |
---|---|
container_issue | 8 |
container_start_page | 1793 |
container_title | Journal of number theory |
container_volume | 132 |
creator | Ahn, Jeoung-Hwan Boutteaux, Gérard Kwon, Soun-Hi Louboutin, Stéphane |
description | To date, the class number one problem for non-normal CM-fields is solved only for quartic CM-fields. Here, we solve it for a family of non-normal CM-fields of degree 2p, p⩾3 and odd prime. We determine all the non-isomorphic non-normal CM-fields of degree 2p, containing a real cyclic field of degree p, and of class number one. Here, p⩾3 ranges over the odd primes. There are 24 such non-isomorphic number fields: 19 of them are of degree 6 and 5 of them are of degree 10. We also construct 19 non-isomorphic non-normal CM-fields of degree 12 and of class number one, and 10 non-isomorphic non-normal CM-fields of degree 20 and of class number one. |
doi_str_mv | 10.1016/j.jnt.2012.02.020 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01286358v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X12000935</els_id><sourcerecordid>S0022314X12000935</sourcerecordid><originalsourceid>FETCH-LOGICAL-e241t-e168e97f4246dd47d828d25af7b2f857bebc5bf1188a7551ebee9e33c851f703</originalsourceid><addsrcrecordid>eNotkMFLwzAYxYMoOKd_gLdcPbTmS5s2w9MYugkTLzt4C0nzxbW0yUjqwP_elgkPHjwej8ePkEdgOTConru882POGfCczWJXZAFsVWVQCXlNFoxxnhVQft2Su5Q6xgBELRZkezgibXqdEvU_g8FIg0d6isH0OFAXIk1hQOqDz3yIg-7p5iNzLfY20eCoxe-ISPnpntw43Sd8-PclOby9Hja7bP-5fd-s9xnyEsYMoZK4ql3Jy8rasraSS8uFdrXhToraoGmEcQBS6loIQIO4wqJopABXs2JJni6zR92rU2wHHX9V0K3arfdqziYAsiqEPMPUfbl0cfpzbjGq1LToG7RtxGZUNrQKmJrxqU5N-NSMT7FZrPgD88xjXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The class number one problem for some non-normal CM-fields of degree 2p</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ahn, Jeoung-Hwan ; Boutteaux, Gérard ; Kwon, Soun-Hi ; Louboutin, Stéphane</creator><creatorcontrib>Ahn, Jeoung-Hwan ; Boutteaux, Gérard ; Kwon, Soun-Hi ; Louboutin, Stéphane</creatorcontrib><description>To date, the class number one problem for non-normal CM-fields is solved only for quartic CM-fields. Here, we solve it for a family of non-normal CM-fields of degree 2p, p⩾3 and odd prime. We determine all the non-isomorphic non-normal CM-fields of degree 2p, containing a real cyclic field of degree p, and of class number one. Here, p⩾3 ranges over the odd primes. There are 24 such non-isomorphic number fields: 19 of them are of degree 6 and 5 of them are of degree 10. We also construct 19 non-isomorphic non-normal CM-fields of degree 12 and of class number one, and 10 non-isomorphic non-normal CM-fields of degree 20 and of class number one.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2012.02.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Class number ; CM-field ; Dedekind zeta function ; Mathematics ; Number Theory</subject><ispartof>Journal of number theory, 2012-08, Vol.132 (8), p.1793-1806</ispartof><rights>2012 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnt.2012.02.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01286358$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Jeoung-Hwan</creatorcontrib><creatorcontrib>Boutteaux, Gérard</creatorcontrib><creatorcontrib>Kwon, Soun-Hi</creatorcontrib><creatorcontrib>Louboutin, Stéphane</creatorcontrib><title>The class number one problem for some non-normal CM-fields of degree 2p</title><title>Journal of number theory</title><description>To date, the class number one problem for non-normal CM-fields is solved only for quartic CM-fields. Here, we solve it for a family of non-normal CM-fields of degree 2p, p⩾3 and odd prime. We determine all the non-isomorphic non-normal CM-fields of degree 2p, containing a real cyclic field of degree p, and of class number one. Here, p⩾3 ranges over the odd primes. There are 24 such non-isomorphic number fields: 19 of them are of degree 6 and 5 of them are of degree 10. We also construct 19 non-isomorphic non-normal CM-fields of degree 12 and of class number one, and 10 non-isomorphic non-normal CM-fields of degree 20 and of class number one.</description><subject>Class number</subject><subject>CM-field</subject><subject>Dedekind zeta function</subject><subject>Mathematics</subject><subject>Number Theory</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAYxYMoOKd_gLdcPbTmS5s2w9MYugkTLzt4C0nzxbW0yUjqwP_elgkPHjwej8ePkEdgOTConru882POGfCczWJXZAFsVWVQCXlNFoxxnhVQft2Su5Q6xgBELRZkezgibXqdEvU_g8FIg0d6isH0OFAXIk1hQOqDz3yIg-7p5iNzLfY20eCoxe-ISPnpntw43Sd8-PclOby9Hja7bP-5fd-s9xnyEsYMoZK4ql3Jy8rasraSS8uFdrXhToraoGmEcQBS6loIQIO4wqJopABXs2JJni6zR92rU2wHHX9V0K3arfdqziYAsiqEPMPUfbl0cfpzbjGq1LToG7RtxGZUNrQKmJrxqU5N-NSMT7FZrPgD88xjXw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Ahn, Jeoung-Hwan</creator><creator>Boutteaux, Gérard</creator><creator>Kwon, Soun-Hi</creator><creator>Louboutin, Stéphane</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>1XC</scope></search><sort><creationdate>201208</creationdate><title>The class number one problem for some non-normal CM-fields of degree 2p</title><author>Ahn, Jeoung-Hwan ; Boutteaux, Gérard ; Kwon, Soun-Hi ; Louboutin, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e241t-e168e97f4246dd47d828d25af7b2f857bebc5bf1188a7551ebee9e33c851f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Class number</topic><topic>CM-field</topic><topic>Dedekind zeta function</topic><topic>Mathematics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Jeoung-Hwan</creatorcontrib><creatorcontrib>Boutteaux, Gérard</creatorcontrib><creatorcontrib>Kwon, Soun-Hi</creatorcontrib><creatorcontrib>Louboutin, Stéphane</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Jeoung-Hwan</au><au>Boutteaux, Gérard</au><au>Kwon, Soun-Hi</au><au>Louboutin, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The class number one problem for some non-normal CM-fields of degree 2p</atitle><jtitle>Journal of number theory</jtitle><date>2012-08</date><risdate>2012</risdate><volume>132</volume><issue>8</issue><spage>1793</spage><epage>1806</epage><pages>1793-1806</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>To date, the class number one problem for non-normal CM-fields is solved only for quartic CM-fields. Here, we solve it for a family of non-normal CM-fields of degree 2p, p⩾3 and odd prime. We determine all the non-isomorphic non-normal CM-fields of degree 2p, containing a real cyclic field of degree p, and of class number one. Here, p⩾3 ranges over the odd primes. There are 24 such non-isomorphic number fields: 19 of them are of degree 6 and 5 of them are of degree 10. We also construct 19 non-isomorphic non-normal CM-fields of degree 12 and of class number one, and 10 non-isomorphic non-normal CM-fields of degree 20 and of class number one.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2012.02.020</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-314X |
ispartof | Journal of number theory, 2012-08, Vol.132 (8), p.1793-1806 |
issn | 0022-314X 1096-1658 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01286358v1 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Class number CM-field Dedekind zeta function Mathematics Number Theory |
title | The class number one problem for some non-normal CM-fields of degree 2p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20class%20number%20one%20problem%20for%20some%20non-normal%20CM-fields%20of%20degree%202p&rft.jtitle=Journal%20of%20number%20theory&rft.au=Ahn,%20Jeoung-Hwan&rft.date=2012-08&rft.volume=132&rft.issue=8&rft.spage=1793&rft.epage=1806&rft.pages=1793-1806&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2012.02.020&rft_dat=%3Celsevier_hal_p%3ES0022314X12000935%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X12000935&rfr_iscdi=true |