Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and t...
Gespeichert in:
Veröffentlicht in: | Fire technology 2016-01, Vol.52 (1), p.221-237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | 221 |
container_title | Fire technology |
container_volume | 52 |
creator | Hoffman, C. M. Canfield, J. Linn, R. R. Mell, W. Sieg, C. H. Pimont, F. Ziegler, J. |
description | Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions that drive fire behavior. Both of these models have had limited evaluation and have not been assessed for predicting crown fire behavior. In this paper, we utilized a published set of field-scale measured crown fire rate of spread (ROS) data to provide a coarse assessment of crown fire ROS predictions from previously published studies that have utilized WFDS or FIRETEC. Overall, 86% of all simulated ROS values using WFDS or FIRETEC fell within the 95% prediction interval of the empirical data, which was above the goal of 75% for dynamic ecological modeling. However, scarcity of available empirical data is a bottleneck for further assessment of model performance. |
doi_str_mv | 10.1007/s10694-015-0500-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01283080v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765975227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-71ee8b82755d7a794fa0ccb9a6cd9791edbacfa25e424560dbcaf1594acd2c793</originalsourceid><addsrcrecordid>eNqN0V1LHDEUBuBQWnBr_QHeBXpTL0ZPMpOvy3XRqmxR_LgOZ5OMzjI7WZMZi_--s0wpRRC8CiTPezjhJeSQwTEDUCeZgTRVAUwUIACK8hOZMaF4ocGYz2QGuxcudbVHvua8BgCjJMzI1dkLtgP2TfdIFyn-7uh5kwK9xT7QWNO7bQro6U0KvnF9E7tM6xQ39ObpNTcuF6eYg6e_og9t_ka-1NjmcPD33CcP52f3i4tief3zcjFfFk4o1ReKhaBXmishvEJlqhrBuZVB6bxRhgW_QlcjF6HilZDgVw5rJkyFznOnTLlPjqa5T9jabWo2mF5txMZezJd2dweM6xI0vLDR_pjsNsXnIeTebprsQttiF-KQLVNacs6lkh-gUhglOFcj_f6GruOQuvHToxIGtFYlHxWblEsx5xTqf8sysLvS7FTauK-wu9JsOWb4lMmj7R5D-m_yu6E_pqOXlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759088732</pqid></control><display><type>article</type><title>Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hoffman, C. M. ; Canfield, J. ; Linn, R. R. ; Mell, W. ; Sieg, C. H. ; Pimont, F. ; Ziegler, J.</creator><creatorcontrib>Hoffman, C. M. ; Canfield, J. ; Linn, R. R. ; Mell, W. ; Sieg, C. H. ; Pimont, F. ; Ziegler, J.</creatorcontrib><description>Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions that drive fire behavior. Both of these models have had limited evaluation and have not been assessed for predicting crown fire behavior. In this paper, we utilized a published set of field-scale measured crown fire rate of spread (ROS) data to provide a coarse assessment of crown fire ROS predictions from previously published studies that have utilized WFDS or FIRETEC. Overall, 86% of all simulated ROS values using WFDS or FIRETEC fell within the 95% prediction interval of the empirical data, which was above the goal of 75% for dynamic ecological modeling. However, scarcity of available empirical data is a bottleneck for further assessment of model performance.</description><identifier>ISSN: 0015-2684</identifier><identifier>EISSN: 1572-8099</identifier><identifier>DOI: 10.1007/s10694-015-0500-3</identifier><identifier>CODEN: FITCAA</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Assessments ; Biodiversity and Ecology ; Characterization and Evaluation of Materials ; Civil Engineering ; Classical Mechanics ; Computer based modeling ; Computer simulation ; Dynamics ; Ecological models ; Empirical analysis ; Engineering ; Environmental conditions ; Environmental Sciences ; Fires ; Fluid dynamics ; Fluid mechanics ; Hydrodynamics ; Laboratories ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Partial differential equations ; Physics ; Wildfires ; Wildland-urban interface</subject><ispartof>Fire technology, 2016-01, Vol.52 (1), p.221-237</ispartof><rights>Springer Science+Business Media New York (Outside USA) 2015</rights><rights>Springer Science+Business Media New York 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-71ee8b82755d7a794fa0ccb9a6cd9791edbacfa25e424560dbcaf1594acd2c793</citedby><cites>FETCH-LOGICAL-c577t-71ee8b82755d7a794fa0ccb9a6cd9791edbacfa25e424560dbcaf1594acd2c793</cites><orcidid>0000-0002-9842-6207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10694-015-0500-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10694-015-0500-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01283080$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffman, C. M.</creatorcontrib><creatorcontrib>Canfield, J.</creatorcontrib><creatorcontrib>Linn, R. R.</creatorcontrib><creatorcontrib>Mell, W.</creatorcontrib><creatorcontrib>Sieg, C. H.</creatorcontrib><creatorcontrib>Pimont, F.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><title>Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models</title><title>Fire technology</title><addtitle>Fire Technol</addtitle><description>Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions that drive fire behavior. Both of these models have had limited evaluation and have not been assessed for predicting crown fire behavior. In this paper, we utilized a published set of field-scale measured crown fire rate of spread (ROS) data to provide a coarse assessment of crown fire ROS predictions from previously published studies that have utilized WFDS or FIRETEC. Overall, 86% of all simulated ROS values using WFDS or FIRETEC fell within the 95% prediction interval of the empirical data, which was above the goal of 75% for dynamic ecological modeling. However, scarcity of available empirical data is a bottleneck for further assessment of model performance.</description><subject>Approximation</subject><subject>Assessments</subject><subject>Biodiversity and Ecology</subject><subject>Characterization and Evaluation of Materials</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computer based modeling</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Ecological models</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Environmental conditions</subject><subject>Environmental Sciences</subject><subject>Fires</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Wildfires</subject><subject>Wildland-urban interface</subject><issn>0015-2684</issn><issn>1572-8099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0V1LHDEUBuBQWnBr_QHeBXpTL0ZPMpOvy3XRqmxR_LgOZ5OMzjI7WZMZi_--s0wpRRC8CiTPezjhJeSQwTEDUCeZgTRVAUwUIACK8hOZMaF4ocGYz2QGuxcudbVHvua8BgCjJMzI1dkLtgP2TfdIFyn-7uh5kwK9xT7QWNO7bQro6U0KvnF9E7tM6xQ39ObpNTcuF6eYg6e_og9t_ka-1NjmcPD33CcP52f3i4tief3zcjFfFk4o1ReKhaBXmishvEJlqhrBuZVB6bxRhgW_QlcjF6HilZDgVw5rJkyFznOnTLlPjqa5T9jabWo2mF5txMZezJd2dweM6xI0vLDR_pjsNsXnIeTebprsQttiF-KQLVNacs6lkh-gUhglOFcj_f6GruOQuvHToxIGtFYlHxWblEsx5xTqf8sysLvS7FTauK-wu9JsOWb4lMmj7R5D-m_yu6E_pqOXlQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hoffman, C. M.</creator><creator>Canfield, J.</creator><creator>Linn, R. R.</creator><creator>Mell, W.</creator><creator>Sieg, C. H.</creator><creator>Pimont, F.</creator><creator>Ziegler, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>National Fire Protection Association (NFPA) ; Society of Fire Protection Engineers (SFPE) ; Springer Verlag [1965-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7T2</scope><scope>7WY</scope><scope>7X7</scope><scope>7XB</scope><scope>883</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0F</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7U2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9842-6207</orcidid></search><sort><creationdate>20160101</creationdate><title>Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models</title><author>Hoffman, C. M. ; Canfield, J. ; Linn, R. R. ; Mell, W. ; Sieg, C. H. ; Pimont, F. ; Ziegler, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-71ee8b82755d7a794fa0ccb9a6cd9791edbacfa25e424560dbcaf1594acd2c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Assessments</topic><topic>Biodiversity and Ecology</topic><topic>Characterization and Evaluation of Materials</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computer based modeling</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Ecological models</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Environmental conditions</topic><topic>Environmental Sciences</topic><topic>Fires</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Wildfires</topic><topic>Wildland-urban interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, C. M.</creatorcontrib><creatorcontrib>Canfield, J.</creatorcontrib><creatorcontrib>Linn, R. R.</creatorcontrib><creatorcontrib>Mell, W.</creatorcontrib><creatorcontrib>Sieg, C. H.</creatorcontrib><creatorcontrib>Pimont, F.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>ABI/INFORM Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Safety Science and Risk</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fire technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, C. M.</au><au>Canfield, J.</au><au>Linn, R. R.</au><au>Mell, W.</au><au>Sieg, C. H.</au><au>Pimont, F.</au><au>Ziegler, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models</atitle><jtitle>Fire technology</jtitle><stitle>Fire Technol</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>52</volume><issue>1</issue><spage>221</spage><epage>237</epage><pages>221-237</pages><issn>0015-2684</issn><eissn>1572-8099</eissn><coden>FITCAA</coden><abstract>Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions that drive fire behavior. Both of these models have had limited evaluation and have not been assessed for predicting crown fire behavior. In this paper, we utilized a published set of field-scale measured crown fire rate of spread (ROS) data to provide a coarse assessment of crown fire ROS predictions from previously published studies that have utilized WFDS or FIRETEC. Overall, 86% of all simulated ROS values using WFDS or FIRETEC fell within the 95% prediction interval of the empirical data, which was above the goal of 75% for dynamic ecological modeling. However, scarcity of available empirical data is a bottleneck for further assessment of model performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10694-015-0500-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9842-6207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-2684 |
ispartof | Fire technology, 2016-01, Vol.52 (1), p.221-237 |
issn | 0015-2684 1572-8099 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01283080v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Assessments Biodiversity and Ecology Characterization and Evaluation of Materials Civil Engineering Classical Mechanics Computer based modeling Computer simulation Dynamics Ecological models Empirical analysis Engineering Environmental conditions Environmental Sciences Fires Fluid dynamics Fluid mechanics Hydrodynamics Laboratories Mathematical analysis Mathematical functions Mathematical models Partial differential equations Physics Wildfires Wildland-urban interface |
title | Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Crown%20Fire%20Rate%20of%20Spread%20Predictions%20from%20Physics-Based%20Models&rft.jtitle=Fire%20technology&rft.au=Hoffman,%20C.%20M.&rft.date=2016-01-01&rft.volume=52&rft.issue=1&rft.spage=221&rft.epage=237&rft.pages=221-237&rft.issn=0015-2684&rft.eissn=1572-8099&rft.coden=FITCAA&rft_id=info:doi/10.1007/s10694-015-0500-3&rft_dat=%3Cproquest_hal_p%3E1765975227%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759088732&rft_id=info:pmid/&rfr_iscdi=true |